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8 Lidar Brings Monticello Into Focus
One of the most important sources of new discoveries is 
the Monticello Plantation Archaeological Survey, an ongoing 
effort to locate all the archaeological sites and traces of past 
land use on the 2500 acres currently owned by the Thomas 
Jefferson Foundation, the non-profit responsible for Monticello’s 
preservation and interpretation.
BY: BRAD BARKER AND DEREK WHEELER

16 3D AI in the Lidar HD Production Process
Designed to meet the needs of various public actions (flood 
risk prevention, estimation of forest resources, etc.), the Lidar 
HD program aims to provide a 3D description of the French 
territory by 2025. Operated by the French Mapping Agency, 
the project is funded by governmental allocations and regional 
authorities’ support.
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22 Digital Twins Open Up Rainforest Conservation
Imagine a digital twin. Perhaps you are imagining the digital 
representation of a chip inside a phone or of a manufacturing 
shop floor, or even an entire digitized city. Now imagine using this 
capability for a rainforest in Costa Rica where jaguars roam and 
exotic birds perch in ancient and medicinal trees.
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Feature Extraction
Over the past 20 years, lidar-derived digital elevation models 
(DEMs) have become the staple of surface-water hydrography 
and hydraulic (H&H) modeling. During this same period, lidar has 
evolved significantly in terms of both absolute three-dimensional 
(horizontal and vertical) spatial accuracy. Most recently, two distinct 
lidar technologies have emerged, linear-mode and Geiger-mode.
BY AL KARLIN

33 Decades of Historic Data Finished
Accurate geospatial data on surface water and drainage is 
crucial for planning, engineering, and daily operational activities 
for every county in every state. Nevertheless, Ohio has coped for 
decades without a full set of timely, comprehensive geospatial 
surface water and drainage data. This shortfall has prevented 
stakeholders from understanding current drainage scenarios.
BY BRIAN STEVENS

37 Evaluating Accuracy according to the New  
ASPRS Standards
This article was inspired by a comment I received: “Even after 24 
years as a land surveyor, I can still use refreshing on how to explain 
the basics to my clients and surveyors-in-training. Your in-depth 
discussion on the difference between the standard deviation and 
the root mean square error (RMSE) was very appreciated.”
BY QASSIM ABDULLAH
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48 Full Coverage:  
The quest for “wall-to-wall” coverage 
for hydrospatial applications
BY AMAR NAYEGANDHI (& AL KARLIN)

 ON THE COVER
Sunrise over Thomas Jefferson’s Monticello, Charlottesville, Virginia. Image courtesy of the Thomas Jefferson Foundation, a non-profit 
responsible for the historic plantation’s preservation and interpretation. Achieving the Plantation Survey’s goals requires accurate maps, 
and the accuracy of the maps available to the Foundation’s archaeologists has radically improved thanks to aerial lidar.
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they work. When it comes to understanding the world around us, 
when laying the foundations of our economies, infrastructure, 
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scale continuing to grow with every year. Public investment in 
infrastructure projects is rising but time frames for completion 
are getting shorter, all while regulatory and safety requirements 
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but our methods have to evolve to keep us fi t for purpose.  

New methods and tools need to integrate with and evolve existing 
toolkits and practices. Drawing on the established power of software and 
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scanning, processing, and modeling toolkit in a natural, necessary way.
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FROM THE EDITOR

A Digital Record

O ur cover story is about an archaeological application. Well-
known geospatial services company Surdex1 was contracted 
by the Thomas Jefferson Foundation to acquire lidar of the 

Jefferson plantation in Monticello, Virginia. Not surprisingly, the new 
data has engendered many discoveries that were simply not possible with 
previous techniques. We’ve become accustomed to staggering discover-
ies through lidar’s penetration of vegetation, but it’s worth remembering 
that this need not be in tropical rainforest—the advantages bear fruit 
in temperate climes too. The authors mention the Cahokia site near St. 
Louis– there is a plethora of literature on this, including a useful, short 
piece on some surveying aspects2. I cite this as a reminder that there’s a 
lot more to archaeological surveys in the 21st century than photogram-
metry and lidar: the Cahokia piece described a geophysical survey of the 
site, just as our Monticello piece concludes that the lidar data facilitates 
decision-making on the most promising places to conduct sediment 
analyses using a range of the latest techniques.

We are fortunate to share an article by Qassim Abdullah that is also 
running in Photogrammetric Engineering & Remote Sensing. This focuses 
on an aspect of Edition 2 of the ASPRS Positional Accuracy Standards for 
Digital Geospatial Data and emphasizes a self-evident truth: the ground 
control points and independent check points that we use to georeference 
then QC lidar surveys are themselves not perfect but are subject to 
errors, i.e. their coordinates in whatever datum is being used are not 
error-free and this has to be taken into account when estimating and 
publishing the accuracy of the lidar. Sometimes it’s hard to put numbers 
on the accuracy of the survey of the control and check points, but Qassim 
gives guidelines and typical values that can be used.

Crossing the Atlantic, we are pleased to offer an engaging article by 
Floryne Roche of the French national mapping agency, IGN, on the use 
of artificial intelligence to help with the processing of lidar data. France 
is heavily engaged on a nationwide lidar program, called HD Lidar, with 
similarities to the USGS 3DEP program, so the requirement for reliable, 
automated techniques to facilitate the massive data-processing task is an 
urgent one. IGN’s approach is both leading-edge and practical. 

Contributing writer Al Karlin has provided yet another significant 
article. Lidar is being used all over the world to extract hydrographic 
and hydrologic features—stream geometries, hierarchies and so on. 
Al has looked at data sets of parts of Pinellas Country, Florida, to 

1 Now part of Bowman Consulting Group: businesswire.com/news/
home/20240402970569/en/Bowman-Enters-into-Definitive-Agreement-
to-Acquire-Surdex-Corporation-Adding-High-Altitude-Digital-Imagery-
Digital-Mapping-and-Advanced-Geospatial-Services 

2 Thoresen, J., 2023. The Cahokia mounds, xyHt, 10(4): 10-14, April 2023.
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see how the results from QL1 and QL2 
linear-mode lidar collections and a 
Geiger-mode collection compare. This is 
extremely valuable as it gives an idea of 
what it is reasonable to expect from the 
different modalities and sensors.

Brian Stevens’s piece describes the use 
of 3DEP and 3DHP by Woolpert to create 
the Ohio Surface Water Model, a new 
approach to elevation-derived hydrog-
raphy. The testimonials from county 
engineers are heartfelt and encouraging.

Al Karlin has also played a role in the 
latest installment of Amar Nayegandhi’s 
“Full Coverage” column. These two 
experts argue the pros and cons of includ-
ing total propagated uncertainty as lidar 
metadata. We should reflect on this as 
LAS, LAZ and other standards advance.

We end with a return to the rainfor-
est—in Costa Rica! Andrew Kerr, from 
Hexagon’s R-evolution—crudely, the 
green part of the conglomerate—has 
been working on reforestation using 
tremendously informative forest data 
formed by merging airborne lidar from 
a Leica CountryMapper with ground-
based lidar from the handheld BLK2GO. 
The images in this article are arresting in 
their intricacy and beauty.

You can learn more about Leica 
CountryMapper, both its capabilities 
and the intriguing history behind it, 
in one of our podcasts. The LIDAR 
Magazine Podcasts are growing as new 
episodes are added every couple of 
weeks3. Each is interesting in its own 
way, but the conversation with Ron Roth 
of Leica Geosystems, whom I’ve known 
for more than 25 years, is poignant.

I like to close editorials with snippets 
from something I’ve read. The National 
Trust is a UK non-profit that protects and 

3 lidarmag.com/podcast/ 

manages coastline, woodlands, countryside 
and hundreds of historic buildings, gardens 
and precious collections, many of which 
were donated by families no longer able 
to maintain them. Reading a short article 
in the organization’s journal about an 
initiative to rejuvenate chalk grassland 
in the South Downs, part of southern 
England4, I learned that the Trust is work-
ing with Historic England on mapping 
the area’s many ancient monuments using 
aerial photography and lidar. Meanwhile, 
matters are more urgent in Scotland. At 
Knowe of Swandro, on the island of Rousay, 
which is in the Orkney archipelago to the 
north of the Scottish mainland, there are 
remains of important Iron Age and Norse 
settlements. Sadly, the sediments on which 
they are located are being washed away by 
rising sea level and more frequent storms, 
both occasioned by climate change5. The 
solution—use lidar and imagery to create a 
digital record for future generations, just in 
case the race against the elements is lost.

Reading and editing authors’ 
manuscripts and the resulting proofs 
is enjoyable yet challenging. But some-
times, while buried in docs/pdfs, one’s 
mind wanders. Almost two years ago, 
I became treasurer of the International 
Society for Photogrammetry and Remote 
Sensing (ISPRS6) at its XXIV Congress 
in Nice, France. I traveled west, on the 
fast TGV railroad, to Montpellier, to 
attend the YellowScan “LiDAR for Drone 
2022” event. I reported this for readers7 
and continued by train to Austria, for a 
morning in beautiful Graz at the facility 
of Vexcel Imaging. At that time, we knew 

4 Beer, H., 2023. Changing Chalk, National 
Trust Magazine, 160: 32-27, autumn 2023.

5 Anon, 2024. In ruins: climate change is un-
earthing and erasing history all at once, The 
Economist, 450(9386): 74, 16 March 2024.

6 isprs.org 
7 lidarmag.com/2022/06/24/nice-is-nice/

Vexcel Imaging as a supplier of top-notch 
aerial cameras for crewed aircraft, but 
times have changed. Last year, Vexcel 
Imaging announced a new product, 
UltraCam Dragon 4.1, which is based on 
an integration of its UltraCam Osprey 
camera with RIEGL’s VQ-680 OEM lidar 
module8. Thus this firm is now fully in 
the lidar world—as opposed to supplying 
its big cameras to fly in the same aircraft 
as other suppliers’ lidar sensors—so I’m 
writing up the visit for an article to be 
published later this year.

I continued eastwards and spent one of 
the most perfect days of my professional 
life. Thanks to Johannes Riegl, Jr., of 
RIEGL USA in Winter Park, Florida, 
where I attended the opening of the new 
facility9, the folks at RIEGL’s headquarters 
in Horn, north of Vienna, rolled out the 
red carpet and gave me a day of intense, 
high-quality presentations intertwined 
with tours of the various buildings on 
the campus, and the new instrument test 
range, where I was honored to have Dr. 
Andreas Ullrich to accompany me!

I’m currently writing up travels that have 
taken place since Geo Week in Denver in 
February 2024—look out for them on the 
website soon. I believe it’s time, as one shiv-
ers in the winter of one’s career, to thank 
the people who helped me fashion my 
career, the magazine for supporting me, the 
conference organizers, and the magazine’s 
customers for their warm welcomes and 
unselfish sharing of technologies and ideas. 
Thanks for the memories.

A. Stewart Walker // Managing Editor

8 vexcel-imaging.com/the-new-ultracam-
dragon-4-1-game-changing-hybrid-
oblique-imaging-and-lidar-system/ 

9 lidarmag.com/2021/11/24/riegl-ribbon-cutting

FROM THE EDITOR
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T oday, Thomas Jefferson’s 
Monticello ranks as one of the 
most important historical sites 

in the United States. Two centuries ago, 
Monticello was a 5000-acre plantation 
that was home not just to Jefferson, but 
also to hundreds of enslaved people 
and their families, producing tobacco 
and later wheat for sale on Atlantic 
markets. The ongoing interdisciplinary 
study of the Monticello landscape, 
the artifacts that lie under it, and 
surviving documents are providing 21st 
century Americans with a much clearer 

understanding of the property and the 
lives of all its residents than we had a 
decade ago.

One of the most important sources 
of new discoveries is the Monticello 
Plantation Archaeological Survey, an 
ongoing effort to locate all the archaeo-
logical sites and traces of past land use 
on the 2500 acres currently owned by 
the Thomas Jefferson Foundation, the 
non-profit responsible for Monticello’s 
preservation and interpretation. 
Achieving the Plantation Survey’s 
goals requires accurate maps, and the 

accuracy of the maps available to the 
Foundation’s archaeologists has radically 
improved thanks to aerial lidar, which 
has the ability to reveal geographic 
detail that is otherwise undetectable. 
Lidar is proving to be a valuable tool in 
the modern archaeologist’s toolbox for 
uncovering secrets of the past. 

Derek Wheeler, Research 
Archaeologist at the Thomas Jefferson 
Foundation, relates his reaction to see-
ing the features revealed by lidar data: 
“The level of detail that the lidar data 
provides is astounding—it’s like waking 

Lidar Brings 
Monticello 
into Focus

BY BRAD BARKER AND DEREK WHEELER

Thomas Jefferson Foundation commends 
discoveries from laser scanning

Listen to additional discussion  
at  lidarmag.com/podcast

PODCAST
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up in the morning and putting on my 
glasses. The world goes from fuzzy and 
indistinct to clear!”

Brad Barker, Director of 3D Mapping 
at Surdex, agreed about the increase in 
detail. “After walking the property of 
Monticello, I was amazed at the features 
that could be seen in the lidar. It is easy 

to forget the ruggedness of the natural 
landscape while viewing digital elevation 
models in the office!”

Backdrop
Lidar itself is not new to archaeology, 
with the first instances of its use in the 
1970s when European archaeologists 

used it to map castles and surrounding 
fields. Over the years it has proven 
particularly useful in regions where 
dense vegetation hides architectural 
ruins, for example pyramids, house 
compounds, and causeways of pre-
contact Mayan sites in Mexico and 
Central America. In the United States, 
it has been very beneficial at sites like 
Cahokia near St. Louis, where Native 
Americans built monumental earthen 
mounds and plazas. At Monticello, 

Thomas Jefferson’s 
Monticello at sunrise.

Did you know there 
are three Monticellos?
1. The mansion house,

2. Monticello Mountain  
(500+ acres), which is one 
of the plantation quarter 
farms, and

3. The 5000-acre Monticello 
Plantation. 

Early hand-drawn documents of Monticello Mountain agricultural fields (c. 1795).

2024 VOL. 14 NO. 2  LIDARLIDAR   9



archaeologists are using lidar to advance 
our understanding of both the massive 
amount of earth-moving required to 
construct the ornamental landscape 
around Jefferson’s mansion, as well as 
subtle and often otherwise invisible 
features in the plantation landscape.

Modern efforts
At Monticello, modern archaeological 
research began in 1979 when the 
Thomas Jefferson Foundation assembled 
a team to investigate the Monticello 
mountaintop, including Jefferson’s 
mansion and Mulberry Row, a street 

adjacent to the mansion lined with the 
houses of free and enslaved laborers, as 
well as the shops and outbuildings in 
which many of them worked. Beginning 
in 1997, the Foundation launched the 
Monticello Plantation Archaeological 
Survey to explore the rest of the 
property, where Jefferson’s fields and the 
houses of enslaved agricultural laborers 
were located. Artifact concentrations 
indicating where people lived and 
worked are identified via excavation of 
shovel test pits dug at 40-foot intervals. 
Shovel test pits are circular holes 1-foot 
in diameter that are dug to subsoil, and 
soil and sediments are screened through 
0.25” hardware cloth to reveal artifacts. 
So far archaeologists have dug 26,000 
test pits, covering about a quarter of 
the Foundation’s property, and have 
discovered 28 archaeological sites. 

Lidar data is critical because it reveals 
surrounding landscape features that 
are not readily seen and identified by 

Aerial photograph of Monticello Mountain, 1937.

Monticello plantation, the final 2022 DSM revealing the extent of reforestation when compared to earlier data of mixed 
forested areas and cultivated farmland.
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archaeologists working on the ground. 
The initial data used for this project 
consisted of 2016 USGS lidar data with 2 
points per square meter (ppsm) density 
and a 1-meter digital elevation model 
(DEM). While even this low-density data 
enabled researchers to detect previously 
indiscernible details in the terrain, it did 
not provide the level of detail needed for 
more in-depth analysis. Archaeologists 
sought to increase the level of detail they 
could obtain from higher density lidar.

In 2022 the Monticello archaeol-
ogy team contracted with Surdex 
Corporation, a geospatial company 
recognized for its commitment to 
quality data, for aerial lidar coverage of 
Jefferson’s original 5000-acre holding to 
document the ornamental landscape and 
identify subtle traces of past agricultural 

land use, including berms left by 
vanished fences and field boundaries, 
road traces, walls, long parallel ridges 
that mark orchards, and erosion gullies 
carved by agricultural runoff. Such 
features would provide clues for further 
investigation, including excavation.

Brad Barker, Surdex’s Director of 
3D Mapping, flew to Virginia to meet 
with the Thomas Jefferson Foundation 
archaeological team, headed by 
Dr. Fraser D. Neiman, Director of 
Archaeology, and Derek Wheeler, 
Research Archaeologist. During the 
meeting, the archaeological team 

provided some history of previous 
efforts and discussed the objective of the 
2022 project, to identify subtle landscape 
features that provide a fuller picture of 
the history of land use on the property.

Lidar project design and 
specifications
With the objective laid out clearly, the 
next step was to design the most efficient 
acquisition plan that would ensure the 
desired point density. The project called 
for the acquisition and processing of 33 
square miles of 30 ppsm lidar.

Surdex’s design was to acquire the 
data with an Optech Galaxy Prime 
sensor at 1350 feet above ground level. 
As shown on the flightplan overleaf, 
there was a total of 25 flight lines at 60% 
sidelap to ensure complete coverage. 
Acquisition proved to be challenging 

because, by 2022, a significant portion 
of the project area had been reforested, 
obscuring the bare earth for clear lidar 
returns.

The processed 30 ppsm lidar data 
produced significantly enhanced digital 
elevation models with significantly 
higher clarity than the 2 ppsm USGS 
lidar that was publicly available. The 
berm and road trace lines are notably 
enhanced, and the rows of soil where 
orchards had been planted (previously 
undetectable) are readily visible.

The final deliverables for the project 
were a bare-earth point cloud, a 1-foot 
DEM, a 1-foot digital surface model 
(DSM) and a 1-foot intensity image. 

New discoveries
The 2022 lidar data provides important 
new insights into changing spatial 
organization and land use at Monticello. 
Its analytical potential is enhanced by an 
archive of plats that were surveyed and 
drawn by Jefferson himself, as he laid 
out new agricultural fields and roads. 
Although distorted by survey errors, 
Jefferson’s maps provide valuable clues to 
the identity of anomalies seen in the lidar. 
Later historical maps are also useful. A 

Monticello plantation, 1-meter DEM from 2 ppm lidar revealing roads.

“  The level of detail that the lidar data provides is 
astounding—it’s like waking up in the morning 
and putting on my glasses.”
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1923 survey plat, which shows property 
lines and ownership from 1833, affords a 
record of how pieces of Monticello were 
was sold off after Jefferson’s death in 
1826. Early aerial photos are also impor-
tant; for example, a 1937 aerial survey by 
the US Department of Agriculture shows 
the location of Jefferson’s wheat fields 
that continued in use for a century, soon 
after they were finally abandoned and 
reforestation had set in.

The plantation landscape can be 
divided into two zones: an ornamental 
precinct that surrounded the moun-
taintop mansion and the agricultural 
precinct further down the mountain and 
across the low hills that surround it.

At the center of the ornamental pre-
cinct at the top of Monticello Mountain 
lay Jefferson’s mansion, carefully sited 
on level ground sculpted by the labor of 
enslaved workers. Lidar offers superb 
documentation of the results of their 
efforts: a perfectly flat surface, parabolic 
in plan, encompassing an area of two 
football fields.

Lidar reveals new traces of the “round-
about” road system that documents 
tell us was constructed in the 1790s. As 
recorded by Jefferson, enslaved workers 
cleared four roundabouts circling the 
mountaintop at successively lower eleva-
tions. A series of connector roads linked 
adjacent roundabouts. The roundabouts 

echoed landscape 
designs Jefferson 

saw in England on 
the estates of aristocrats. 

Segments of some of the 
roundabouts and connectors 

survive and are still in use today. 
But many other segments, missed in 

earlier mapping campaigns, can now 
be identified in the new lidar data and 
precisely located on the ground.

Lidar also unveils previously unrecog-
nized segments of what Jefferson called 
“the north road.” This was essentially the 
“scenic route” that snaked along the con-
tours of the mountain’s steep, forested 
north slope and transported visitors to 
the mountaintop mansion, out of sight 
of the plantation’s agricultural fields. 

Lidar also gives us new insights into 
two landscape features that fell outside 
the ornamental precinct but were the 
source material used to construct the 
mansion at its center. The first is the 
brickyard where hundreds of thousands 
of bricks were made. Lidar uncovers 
a long, low earthen berm stretching 
across a flat-bottomed, stream-fed 
ravine about a half-mile south of the 
mansion. On the upstream side of the 
berm the ground level was higher, an 
indication of impounded sediment 
behind it. The dam served to collect 
water required to process the clay for 
molding. The ground behind the dam 
was littered with small mounds which 
field testing revealed as piles of brick 
wasters (over-fired bricks). Another 
half-mile to the south, archaeologists 
identified a stone outcrop and the 
depression below it where tons of arkose 
(a coarse sandstone rich in feldspar) 
were quarried for use in constructing 
Monticello’s cellars and wings.

Surdex’s flight plan to acquire lidar data of the Monticello plantation at a density of 30 ppsm 
from a flying height of 1350 feet above ground.
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Lidar also provides new evidence of 
the plantation’s roads on which crops, 
and the enslaved people who grew them, 
moved. What Jefferson called the “east 
road” connected the mansion to the 
plantation’s fields and the fields to the 
Rivanna River, which carried crops to 
Richmond, Virginia, for sale on Atlantic 
markets. While segments of this road 
are still in use, there were no traces of 
it within a half a mile of the mansion. 
However, archaeologists can see the 
missing part in the lidar data.

 Lidar data divulges yet more physical 
marks of past land use. For example, 
long-vanished fence lines left traces 
in the form of linear berms created by 
sediment trapped in the vegetation 
growing under them. The berms are 
traces of agricultural field and property 
boundaries. Some of them are visible 
today on the ground, but others can 
only be seen in the new lidar coverage.  
The locations of many berms match 

the property boundaries shown on 
the 1923 survey plat and date back to 
the division and sale of the plantation 
after Jefferson’s death a century earlier. 
However, some of them may mark the 
edges of Jefferson-era fields.

The new lidar coverage offers fresh 
insights into the locations of long-
vanished orchards. These appear as 
parallel ridges averaging roughly 30 
feet apart, left by tree rows and well-
trodden paths between them. Most 

of these are invisible to an observer 
standing on top of them.

In the early nineteenth century, at the 
same time Jefferson was directing his 
overseers and enslaved field hands to start 
cultivating wheat as a cash crop, he also 

had these same people start additional 
building projects in an attempt at 
economic diversification, such as a series 
of mills along the Rivanna River. These 
include a grist mill designed to grind 
wheat into flour for the export trade; a toll 

Monticello Mountain, 2022 bare earth with 1-foot DEM from 30 ppsm lidar revealing significant improvement 
in resolution over the previous 2 ppsm lidar.

“  Archaeologists can decipher how Monticello’s 
residents altered the environment and had to adapt 
to these changes. The new lidar data helps identify 
areas for this kind of scientific investigation.”
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mill that ground wheat and corn which 
was consumed locally; and a sawmill 
whose products were used at Monticello 
and neighboring plantations. The 
locations of the mills as well as traces of 
the canals that brought the water to power 
the mills can be seen in the lidar data.

Laying the groundwork for 
future research
A major focus of archaeological research 
at Monticello is the transition from the 
hoe-based cultivation of tobacco to 
plow-based cultivation of wheat in the 
1790s. Lidar allows archaeologists to 
identify the effects of the plowing more 
accurately, including erosional gullies. 
Not surprisingly, it reveals that gullies 
are widest and deepest on the southern 
slopes of the mountain, where the wheat 
fields were located.  

The gullies literally point to another 
important land-use trace visible in lidar: 
level areas below them where the eroded 
sediment was trapped by natural topog-
raphy or rock walls. Locating trapped 
sediment opens the door to exciting future 
research opportunities. In previous work, 
archaeologists at Monticello discovered 
that similar erosion deposits are often 
deeply stratified. The bottom layers pre-
date European settlement and are overlain 
by layers that span initial European 
settlement and tobacco cultivation, then 
the transition to wheat, and finally refor-
estation. By analyzing stratified sediment 
using a variety of scientific methods 
(for example, pollen analysis, sediment 
chemistry, and optically stimulated 
luminescence dating), archaeologists 
can decipher how Monticello’s residents 
altered the environment and the ways in 

which they had to adapt to these changes. 
The new lidar data helps archaeologists 
identify areas for this kind of scientific 
investigation. 

Brad Barker is Director of 
3D Mapping at Surdex 
Corporation, Chesterfield, 
Missouri, USA. Brad has 
been with Surdex for 26 
years. He has a BASc 
degree in GIS and 

cartography from Missouri State University.

Derek Wheeler is a 
Research Archaeologist at 
the Thomas Jefferson 
Foundation, Charlottesville, 
Virginia, USA. He has been 
with the Foundation for 29 
years. He has a BA in 

anthropology from the University of California, 
Berkeley and a MA in anthropology/
archaeology from the University of Virginia.

Monticello Mountain: the final 2022 DEM with overlays of the 1833 property 
lines and early 19th century field boundaries.
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The Lidar HD program

D esigned to meet the needs of 
various public actions (flood 
risk prevention, estimation 

of forest resources, etc.), the Lidar 
HD program aims to provide a 3D 
description of the French territory by 
2025, using high-density aerial lidar 
(10 pulses/m²). Operated by the French 
Mapping Agency (Institut national de 

l’information géographique et forestière, 
IGN) with both internal resources and 
subcontracted assistance, the project is 
funded by governmental allocations and 
regional authorities’ support. The data 
acquired and produced as part of this 
program is made available as open data 
(point clouds, DEMs, DSMs, etc.).

The program consists of four phases: 
data acquisition, processing, hosting and 

distribution, and user support. In this 
article, we focus on the data-processing 
phase, specifically on point-cloud clas-
sification. Point clouds are segmented into 
ten classes: ground, low, medium, and high 
vegetation (categorized based on height 
above ground), buildings, water, bridges, 
permanent structures (including wind 
turbines, antennas, high-voltage lines, etc.), 
artifacts, and unclassified (Figure 1).

3D AI in the Lidar HD 
Production Process

BY FLORYNE ROCHE

How AI improves the point-cloud classification process 
at IGN, France’s national mapping agency
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Figure 1: Classified Lidar HD point cloud 
over the valley of Chamonix (left) and the 
harbor of La Rochelle (right). The ground is 
shown in orange, buildings in red, vegetation 
in shades of green, water in blue. 

Figure 2: Simplified 
classification process.

The area to be processed spans 
550,000 km², encompassing mainland 
France and its overseas territories. This 
amounts to a massive 3 petabytes of lidar 
data. The data acquisition and process-
ing are sequenced in blocks of 50 km x 
50 km and must be adapted to a range 
of sensors (Leica Geosystems, Riegl, 
and Teledyne Geospatial), acquisition 
seasons (leaf-on or leaf-off), and diverse 
landscapes (plains, mountains, and 
overseas territories).

Tools and data for the 
classification process
Several tools and data sources can be 
leveraged for point-cloud classification: 

 ⦁ TerraScan1, a tool from the 
TerraSolid suite, offers classification 
routines for classifying the point 
cloud using explicit instructions. 

 ⦁ Odeon2 is a deep-learning library 
developed at IGN and used 

1 terrasolid.com/products/terrascan/ 
2 github.com/IGNF/odeon 

to create CoSIA3, which uses 
artificial intelligence to produce a 
large-scale nationwide land cover 
map4, called OCS GE (OCcupation 
du Sol à Grande Échelle). Based 
on aerial imagery, it provides a 
partition of the territory into 17 
classes: deciduous and coniferous 
trees, crops, lawns, bare soil, water 
surfaces, greenhouses, etc.

 ⦁ Myria3D5  is a deep-learning library 
designed for multi-class semantic 
segmentation of large-scale, high-
density aerial lidar point clouds. 
Developed at IGN, it benefited from 
close collaboration with research 
teams highly engaged in deep-
learning methods for 3D classifica-
tion. Models trained in Myria3D 
can predict the probability of each 
point in a 3D cloud belonging to the 
classes described above.

 ⦁ BD Topo® is a 3D vector description 
of the French territory and its 
infrastructures (buildings, roads, 
etc.), with metric precision.

The classification process combines 
these different sources and algorithms, 
resulting in improved performance 
compared to relying on a single method. 

Two use cases for 3D AI 
in the process
The classification process is characterized 
by a sequence of steps (each represented 
by a TerraScan routine) that must be 
followed in a defined order (Figure 2). 
In this section, we explore two examples 
of the use of 3D AI in the process—
buildings and ground.

3 cosia.ign.fr/info
4 geoservices.ign.fr/ocsge 
5 github.com/IGNF/myria3d
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Building: AI as a validator
The main idea: striking a balance 
between automated and manual 
correction
The detection of buildings is clearly cru-
cial. Although explicit routines are used 
to detect buildings, they often result in 
over-detection (e.g. trucks, caravans, 
wood piles adjacent to buildings). Some 
sort of checking is essential.

If a group of points classified as 
buildings is located in an area suf-
ficiently covered by buildings in the 
BD Topo, these points can be excluded 
from the inspection. Nevertheless, 
subsequent human verification remains 
time-consuming, sometimes trivial, and 
therefore tedious. 

To develop a solution, therefore, the 
production process has been taken into 
consideration and a module built to be 

placed between the automatic detection 
of buildings and their verification by an 
operator, with the goal of reducing the 
number of verifications. 

This module is tasked with dif-
ferentiating between groups of points 
identified as buildings:

 ⦁ Those that do not require inspec-
tion because the AI, in agreement 
with BD Topo, is confident that 
they are buildings

 ⦁ Those that do not require inspec-
tion because the AI, in accordance 
with BD Topo, is confident that 
they are not buildings

 ⦁ And those for which the AI cannot 
make a confident determination.

Only in the case of the third bullet 
above will the operator be asked to 
make a verification (Figure 3).

Training data: buildings only
In AI, training data is a crucial resource: 
its availability and quality directly 
impact model performance. The dataset 
used to train the first AI model covers 
various urban and rural landscapes, 
spanning an area of 150 km², but 
features a single class: buildings. The 
points’ labels have been verified and 
curated by operators. As a result, the 
trained model can predict with consid-
erable accuracy whether or not a point 
should be classified as a building.

Procedure: optimization under 
constraint of decision thresholds
The process works on points that are 
grouped into connected components by 
proximity (Figure 4). For each compo-
nent, a decision is made to classify it as a 
building, not a building, or an uncertain 
case. This decision is based on two 
sources of truth:

 ⦁ The point cloud processed by 
the AI model, giving a building 
probability for each point.

 ⦁ Building vectors from BD Topo. 

The decision is also based on thresh-
olds: a point is validated if its probability 
is sufficiently high, and refuted if its 
probability is sufficiently low, and when 
the proportion of validated (or refuted) 
points of a component is sufficiently 
high, that component is confirmed 
(or refuted) according to each of the 
sources. These decisions are then 
cross-referenced to apply the final deci-
sion to all the points in the connected 
component (Figure 5).

The five decision thresholds used in 
this process are optimized to maximize 
automation, i.e. to reduce the number 
of groups of points to be verified, under 
the constraint of maintaining fixed 

Figure 3: Separation of point groups classified as buildings (pink) into validated (red), 
refuted (green), or to be verified (purple) buildings. 
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quality performance (precision and 
recall above 98%) (Figure 6). 

Results
There is a synergy between the two sources 
due to the joint optimization of thresholds. 
AI compensates for the shortcomings of 
BD Topo, and BD Topo makes up for the 
erroneous refutations of the AI model.

By January 2022, 85% of point groups 
could be verified automatically. Since 
then, continuous improvement of the 
AI model (multiclass model, variety of 
training data) has enabled decisions for 
96% of point groups to be automated, 
resulting in a significant reduction in 
the visual inspection time required to 
process these uncertainties. 

Ground: using AI to fill in the gaps
Classification of points as ground is 
of major importance too and presents 
problems of its own. Several of these 
have been addressed and effective 
solutions developed.

Ground detection on ridges
Explicit routines for ground detection 
often struggle to detect ridges. These 
routines work by densifying low points 
via triangulation, where ground slopes 

are limited to avoid classifying buildings 
as ground. However, this approach often 
fails to detect rocky ridges. As a result, 
the bare-earth digital terrain model 
(DEM) can have unsightly triangulations 
(Figure 7a). The question is whether 
the 3D AI model can detect ground on 
these ridges.

Training data:  151 km² multiclass
The model is a multiclass one, trained 
on a 151 km² dataset spanning three 
administrative departments. The 
classification of this area is the result of 
an automatic process followed by manual 
corrections. These 151 km² do not 
include any mountainous areas, but they 

Figure 4: Outline of the building 
classification assistance module.

Figure 5: Decision process in the building validation module.
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do include a few square kilometers cover-
ing part of the Gorges du Tarn, a canyon 
several hundred meters deep carved out 
of limestone by the Tarn River.

Process: bringing out the best in 
everyone 
The results of the AI model are not 
perfect either: ridges are well detected, 
but there are artifacts that resemble 
small rocks (Figure 7b).

Surprisingly, the two approaches 
are complementary: the AI results 
are good in areas where the explicit 
routines perform poorly, and vice versa. 
Therefore, the decision was made to 
combine the two sets of results. In cases 
where the explicit routine yields a low 
density of ground points, the points 
classified as ground by the AI model are 
used instead. 

Results: astonishing complementarity 
The result (Figure 7c) is surprising: the 
two sets of data complement each other 
perfectly, even in the Alps, a mountain 
range with vertical drops that are much 
greater than those of the Gorges du Tarn! 

Future perspectives: 
greenhouses, hydrography, 
vegetation...
Other classes are likely to benefit from 
the complementarity of the different 
data sources. Tests are currently being 
finalized and prepared for deployment to 
process greenhouses, hydrography, and 
vegetation using explicit routines based 
on predictions from Odeon models (2D 
AI), and Myria3D models (3D AI).

Summary and perspectives
The use of Myria3D, an AI framework 
designed for 3D processing, has 
significantly improved results. The 
use cases described in the previous 
paragraphs have been in production for 
over a year.

From the beginning, the decision 
was made to position Myria3D AI as a 
supplementary tool to augment other 
methods (explicit routines) and data 
sources (BD Topo, OCSGE probability 
map), leveraging the Institut’s expertise 
in lidar (creation of a cross-disciplinary 
AI team) and the use of the TerraScan 
tool to coordinate the various sources.

AI was gradually incorporated into 
the classification process, according to 
improvement priorities (buildings, then 
ground; hydrography, vegetation, and 
greenhouses to follow), available data, 
and results (the subject of bridges was 
not pursued, as the tests conducted did 
not yield conclusive results).

To contribute to the 3D AI research 
ecosystem, we have made the Myria3D 
code open source6, and the training 
dataset for the latest AI model will also 
be made public soon. Lidar HD data is 
openly available7.

Several perspectives are currently 
being examined.

 ⦁ As the Lidar HD program 
progresses, more and more data 
becomes available to train our 
3D AI models. From an initial 
situation of scarcity, we now have 
access to abundant training data. 
We therefore developed methods 
to consolidate a highly diverse 
training dataset via the sampling 

6 github.com/IGNF/myria3d/ 
7 geoservices.ign.fr/lidarhd#telechargemen

tclassifiees 

Figure 6: Threshold optimization under constraints.
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of 60,000 50 m x 50 m data patches 
spanning 150 km². The Pacasam 
tool8, developed in-house and open 
source, contributes to this effort. 

 ⦁ The current architecture of 
the model is based on research 
conducted in 2021. Using more 
recent model architecture, such 
as Super Point Transformer9, may 
lead us to more energy-efficient AI 
models with competitive results. 

 ⦁ Experiments have been conducted 
using Myria3D’s architecture to 
distinguish between different 
forest species. 

Floryne Roche graduated 
with a degree in geomat-
ics engineering from 
Ecole national des 
Sciences Géographiques, 
in Marne-La-Vallée, near 
Paris, and began her 

career at the Institut national de 
l’Information géographique et forestière 
(IGN), where she developed tools for 
processing altimetry, particularly from lidar 
data. For seven years, she served as the 
technical link between the users of IGN 
products and services and the Institut, 
gaining a deep understanding of the 
business needs of her contacts. Currently, 
as Product Owner of the AI team within the 
Lidar HD program, she ensures that AI is 
effectively integrated into the production 
process, while also working to promote a 
clear understanding of its contributions. 

8 github.com/IGNF/pacasam
9 github.com/aamsoftware/official_super-

point_transformer 
Figure 7: DEM from points classified as ground by (a) explicit routines, (b) Myria3D AI,  
(c) combining the two sets of results.  
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I magine a digital twin. Perhaps you 
are imagining the digital representa-
tion of a chip inside a phone or of a 

manufacturing shop floor, perhaps you 
are picturing a Formula One race-car 
engine or even an entire digitized city. 
Now imagine using this capability for a 
rainforest in Costa Rica where jaguars 
and tapirs roam and exotic birds perch 
in ancient and medicinal trees.

Advanced technologies are now 
being applied to map one of nature’s 
most complex creations—the tropical 
rainforest. Hexagon’s green-tech subsidiary, 
R-evolution, recently launched Green 
Cubes, an initiative which combines 
technology, science, and environmental 

stewardship to revolutionize rainforest 
conservation. The biodiverse ecosystem 
of the La Gamba biological corridor 
(COBIGA), Costa Rica, is being captured 
with high-precision airborne and terrestrial 
lidar scanners from Hexagon, to measure 
and virtually visualize it for continuous 
monitoring and trustworthy conservation. 

Lidar technologies provide a unique 
opportunity to identify the complexity 
of the rainforest canopy. The digital twin 
combines airborne and terrestrial lidar 
data to unveil the forest in intricate detail 
and unlock new opportunities to manage 
the world’s natural wonders sustainably.

In an initial partnership with La Gamba 
Tropenstation, an Austrian research BY ANDREW KERR

R-evolution uses 
Hexagon airborne 
and terrestrial 
lidar sensors as 
fundamental  
data sources

Advanced technology  is used to map one of nature’s 
most complex creations—the tropical rainforest.

Digital Twins Open Up 
New Possibilities For 
Rainforest Conservation
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This view gives an impression of the biodiverse ecosystem and dense 
vegetation in the verdant La Gamba biological corridor (COBIGA), Costa Rica.

The Leica CountryMapper 
combines a large-format 
photogrammetric camera 
with a high-performance 
lidar unit into a single 
system to collect imagery 
and lidar over very large 
areas simultaneously.

These vertical and oblique views of the point cloud from 
the airborne lidar data, colorized by height, give an idea of 

the detail that the Leica CountryMapper provides.

station associated with the University 
of Vienna, R-evolution is mapping 500 
hectares to generate the first 125 million 
Green Cubes—a sponsorable asset that 
corporate sponsors can purchase to dif-
ferentiate themselves through proactive 
contributions to biodiversity conservation 
and to meet ESG1 requirements.

Building the digital twin from 
the air
Through the combination of airborne 
and terrestrial lidar with ground sensors, 
imagery and GIS data, the rainforest’s 

1  Environmental, Social and Governance.
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development can be monitored over 
time with unprecedented precision.

The core of this approach relies on 
state-of-the-art hybrid airborne sensors 
from Hexagon. Green Cubes utilizes the 
Leica CountryMapper hybrid airborne 
system, which combines lidar and 
large-format imagery in a single sensor. 

The data collected with the hybrid 
sensor allows the creation of a 3D 
digital landscape of the rainforest to 
quantify its volume and to monitor 
changes in vegetation growth over time. 
This establishes a baseline for under-
standing the forest structure. The Leica 
CountryMapper image data in multiple 

spectral bands is registered with the 
lidar data. As a result, a detailed picture 
of the rainforest canopy emerges and 
an index of the different species can be 
constructed.

Beneath the canopy
The handheld terrestrial lidar scanner, 
Leica BLK2GO, is applied beneath the 
canopy to provide high-resolution data 
for ground-truthing that improves the 
quality of the forest structure measure-
ment and sets new standards for 
measuring and analyzing tree biomass 
volume and diameter measurements 
while reinforcing the data captured 
from the air. In addition, data captured 
by the Leica BLK2GO unlocks a virtual 
experience for corporate sponsors, 
bringing nature closer to business.

Andrew Kerr, forest lead at R-evolution, uses the Leica BLK2GO handheld 
terrestrial lidar sensor to capture data that will be combined with the airborne data 
to generate a remarkably detailed and precise representation of the rainforest.

Point cloud generated from the Leica BKL2GO data. All the other images to the right show 
airborne data.
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From tape measures to  
digital twins 
The COBIGA corridor work began 
more than thirty years ago to link the 
lowland rainforests of Golfo Dulce 
with the mountain rainforests of Fila 
Cal in Costa Rica to prevent forest 
fragmentation and genetic isolation. 
From 1993 onwards, the team, led 
by biodiversity researcher Dr. Anton 
Weissenhofer, always implemented 
some form of monitoring. Research 
teams would periodically measure the 
trees, recording the diameters using 
tape measures and notebooks.

The team upgraded its equipment as 
technology progressed. With a small 
sensor, it could measure the forest 
in a three-dimensional picture. That 
provided a good solution, but the data 
was so massive and unstructured that 
they were unable to leverage it well. 

Now, with Green Cubes and a 
complete digital twin, visualized using 
HxDR2, it is possible to capture digitally 
not only the cubic volume of the 
forest, but also the structure, height, 
and diameter of the trees in order to 
calculate the biomass of the rainforest. 

2  https://hxdr.com/ 

Through Green Cubes, researchers can 
explore the data in vivid detail. They can 
create virtual tours, take measurements, 
and add annotations.

The scientists can engage with the 
captured reality in a much more mean-
ingful way by navigating through point 
clouds, meshes, models, and other data. 
Visualizing the data in this streamlined, 
user-friendly way allows scientists to 
accelerate scientific progress through 
enhanced insights and collaboration.

Enabling the change we  
want to see
Every day, countries, companies and 
citizens have the opportunity to make 
positive change. As climate change 
escalates into an existential threat, we 
can adopt habits such as reducing waste 
and water, cutting carbon emissions, 
and eliminating single-use plastics. 
Beyond the changes we make, however, 
we also have a responsibility to enable 
the change we want to see in the world. 

With advanced solutions like digital 
twins, we can quantify and visualize 
natural environments in entirely new 
ways to enhance conservation efforts. 

By leveraging lidar to replicate 
delicate rainforests virtually, this initia-
tive opens new possibilities for sustain-
ability. It embodies how cutting-edge 
technologies can empower humanity 
to enact the systemic change required 
to protect our planet. All our choices 
matter greatly, but we must also harness 
technology’s transformative power to 
build a sustainable future. 

Andrew Kerr is forest lead at 
R-evolution, Hexagon’s 
division responsible for 
nature-based solutions, and 
is heading up the Green 
Cubes program. He has a 
background in GIS and digital 

management together with on-the-ground field 
experience. His projects have taken him from 
satellite tracking of wild dogs in Southern Africa 
to reforestation in Borneo, radio tracking of 
golden bamboo lemurs in Madagascar and 
scanning tropical rainforests in Costa Rica.

The combination of data captured with airborne and mobile mobile mapping technologies helps scientists to better 
understand and monitor the rainforest.
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Surface-water modeling from 
lidar-derived DEMs
Over the past 20 years, lidar-derived 
digital elevation models (DEMs) have 
become the staple of surface-water 
hydrography and hydraulic (H&H) 
modeling. During this same period, lidar 
has evolved significantly in terms of both 
absolute three-dimensional (horizontal 
and vertical) spatial accuracy (<10 cm), 
and increasing pulse density (>24 pulses 
per meter square (ppsm)). Most recently, 
in the commercial lidar market, two 
distinct lidar technologies have emerged, 
linear-mode (LM) and Geiger-mode 
(GM), each with distinct advantages and 
disadvantages (Lin et al., 2022).

In parallel with the evolution of 
lidar specifications and technologies, 
surface-water feature extraction from 
digital elevation models has also devel-
oped. Since the early 2000s the standard 
methodology for feature extraction 
involves computing a flow-direction 
raster and a flow-accumulation raster 
(Tarboton et al., 1991). While the 
basic framework has not changed, 
the methodology for computing these 
rasters has evolved, from the “D8” 
method to a multi-directional flow 
method, to a “D-infinity” method 
and most recently to a continuous 
flow At methodology (Ehlschlaeger, 
1989). The continuous flow model is 
currently favored by USGS for the 3D 

Lidar DEMs for 
Continuous Flow 
Surface Hydrography 
Feature Extraction
BY AL KARLIN

A comparison 
of different lidar 
acquisitions in 
Pinellas County, 
Florida

Figure 1: Pinellas County, Florida, showing the northern, mostly undeveloped Brooker Creek 
watershed and the southern, highly urbanized Cross Bayou Canal/Lake Seminole watershed.
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Hydrography Program for the Nation 
(3DHP FTN)1 for updating the National 
Hydrography Dataset (NHD) and the 
Watershed Boundary Dataset (WBD) 
using USGS 3D Elevation Program 
(3DEP) products. The current USGS 
standard for updating the NHD/WBD 
to 3DHP is to reevaluate on a watershed 
(Hydrological Unit Code 8) by water-
shed basis.

Collecting lidar data over entire 
watersheds can be a costly proposition, 
so it is difficult to find watersheds 
that (1) have been maintained over a 
sufficient time period with little anthro-
pogenic change, and (2) have been 
surveyed multiple times with differing 
lidar specifications and technologies. 
Fortunately, Pinellas County, Florida 
provides such an opportunity.

The Southwest Florida Water 
Management District (SWFWMD) 
houses the Watershed Management 
Program with responsibilities including 
stormwater and flood management in 
the county. Watersheds are reviewed on 
a rotating five-year maximum interval 
basis. In the winter of 2007, SWFWMD 
partnered with the Florida Division of 
Emergency Management (FDEM) to 
collect lidar data for the entire county 
using a Leica ALS40 LM lidar sensor. 
Then, in 2013, the 2007 lidar data was 
upgraded to the USGS QL2 standard 
with some reprocessing and increased 
breaklining. The county was re-mapped 
in 2016, with Harris GM technol-
ogy, and again in 2019, with newer, 
dual-channel, RIEGL VQ-1560 II LM 
technology to meet the USGS QL1 and 
SWFWMD specifications.

As Pinellas County is the most 
densely populated county in Florida 

1 3dhp-for-the-nation-nsgic.hub.arcgis.com/ 

with 3425 people per square mile2, the 
urbanized areas have remained as highly 
urbanized areas over the 12-year period 
and the non-developed areas, designated 
as nature preserves, have remained 
as natural areas. For this comparative 
study, two representative watersheds 
in Pinellas County were chosen. Cross 
Bayou Canal/Lake Seminole is typical of 
urbanized watersheds with a mixture of 
industrialization and dense population. 
The terrain includes extensive ditching/
berms and infrastructure for stormwater 
management. Brooker Creek watershed, 
which stretches across Pinellas and 
Hillsborough counties (see Figure 1), 
however, represents “preserved”, more 
natural portions of the county. The study 
was restricted to the Pinellas County 
portion of Brooker Creek, since it has 
been repeatedly surveyed. 

The watersheds
SWFWMD has developed a set of 
planning units that are used for water-
shed management and are loosely based 
on USGS WBD Code 12 HUCs. The 
SWFWMD planning units, however, also 
serve as governmental/regulatory units. 

For this comparison, two SWFWMD 
watersheds were chosen to represent 
the terrain extremes found in the 
county. The Brooker Creek watershed 
(Figure 1) encompasses a total of 39.44 
square miles (25,645 acres), of which 
only 17.96 square miles (11,681 acres) 
are in Pinellas County. This area consists 
of mostly unaltered terrain with the 
Brooker Creek Preserve accounting for 
over 8700 acres surrounded by low-
density housing. 

The second watershed, in southern 
Pinellas County, Cross Bayou Canal/

2 pinellas.gov/about-pinellas-facts/

Lake Seminole (Figure 1), encompasses 
71.75 square miles (45,918 acres) in 
the most densely populated southern 
portion of the county. In contrast to 
Brooker Creek, this watershed is highly 
urbanized, with extensive ditches, 
culverts, pipes and other infrastructure 
systems to protect the dense population 
from stormwater and flooding.

Digital elevation models
Three lidar-derived DEMs were used for 
this study. For each, the lidar point cloud 
and polygonal breaklines (waterbodies 
over 0.25 acres and double-line drains 
over 8’ wide) were used to construct a 
hydro-flattened DEM; single-line drains 
(SLDs) and/or connectors were not used 
to hydro-enforce the DEM. DEMs were 
constructed with 2.5’ x 2.5’ cells and tiled 
according to the Florida Department of 
Revenue 5000’ x 5000’ tiling scheme. 

1. USGS/QL2 (2007/2013): con-
structed from lidar data originally 
collected in 2007 and reprocessed 
in 2013. The data was collected 
at 2 ppsm in 2007 to the USGS 
QL2 specification, with breaklines 
approximately to the Lidar Base 
Specification Version 1.03. The data 
was then reprocessed by SWFWMD 
in 2013 with upgraded polygonal 
breaklines, as described above.

2. GM (2016): constructed from GM 
data collected in 2016 by Pinellas 
County at a pulse density of 20 
ppsm with breaklines to meet the 
SWFWMD polygonal breakline 
specifications, as described above.

3. USGS/QL1 (2018). As part of the 
USGS/FDEM Florida Peninsular 
Lidar Survey, Pinellas County was 
remapped in 2018. The data was 

3 pubs.usgs.gov/tm/11b4/Version1.0/TM11-B4.pdf 
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collected to meet the USGS QL1 
specifications (8 ppsm) with USGS 
Lidar Base Specification v. 2.04 
breaklines. SWFWMD upgraded 
the breaklines to the SWFWMD 
specifications for polygonal break-
lines, as described above, in 2019-20.

Ground-Truth control data
Since 2003, SWFWMD has been using 
lidar data in support of the Watershed 
Management Program. In 2007, it 
started codifying the lidar specifications 
to support watershed H&H modeling. 
The SWFWMD Lidar Surveying and 
Mapping Specification Template 5.2 
(9 August 2022: available upon public 
records request to SWFWMD) includes 
breakline specifications that are signifi-
cantly more rigorous than those found 
in the USGS Lidar Base Specification: 
(1) all channelized hydrographic features 
less than 8’ wide are captured as 3D 
single-line, monotonic drains; (2) all 
channelized hydrographic features 
greater than 8’ wide are captured as 3D 
double-line and polygonal monotonic 
drains; (3) all waterbodies greater than 
0.5 acres are captured as single-elevation 
3D features; and (4) all islands over 0.5 
acres in waterbodies are captured as 3D 
single-elevation features. The SWFWMD 
specifications also include “connectors”—
2D features used to maintain surface 
water connectivity through breach areas. 
Connectors could include pipes, culverts, 
and other non-visible breaches. Where 
breaches occur along double-line drains, 
two connector lines are used to represent 
the breach. Where breaches occur along 
SLDs, one connector line is used to 
represent the breach.

4 usgs.gov/media/files/lidar-base-
specification-v-20 

DEM preprocessing
As the continuous flow At algorithm 
(Ehlschlaeger, 1989) is a cost-based 
one, standard practice does not include 
prefilling the DEM to remove sinks and 
other artifacts in the surface. Similarly, 
no smoothing was performed on the 
hydro-flattened DEMs. Nonetheless, two 
Esri Arc Hydro tools for DEM manipula-
tion were used to preprocess each DEM:

1. To ensure that artificial path connec-
tions through waterbodies maintain 
a valence no greater than three, the 
double-line drains (polygons) were 
merged with the waterbody polygons 
and the Burn Flat Polygons into 
DEM tool in Arc Hydro was used to 
re-enforce these areas into the DEM.

2. Where the connectors, i.e. breaches 
or culverts, were represented as 
paired linear features, one of the 
pairs was removed, the remaining 
member repositioned to the 
center of the breach/culvert, and 
the single-line connectors were 
enforced into the DEM using the 
Burn Lines into DEM tool. 

Analytical processing
With the possible exception of USGS/
NHD artificial paths (through water-
bodies), the SWFWMD SLDs represent 
the channelized hydrological features 
under 8’ wide and should agree closely 
with the channelized features identified 
for the 3DHP update for the NHD. For 
this comparison, Esri ArcGIS Pro was 
used to buffer the SLDs by 5’ and the 
resulting polygons were used to select 
the results of the flowlines modeled 
from each of the three DEMs. The 
linear distance of SWFWMD SLDs, the 
ground-truth, and the elevation-derived 
hydrography (EDH), i.e. the modeled 
channel, were then used to determine 
the degree of agreement between 
SWFWMD ground-truth and the 
modeled EDH results.

Two levels of analysis were performed 
to help evaluate the differences between 
the lidar-derived DEMs. Firstly, the 
lengths of each Strahler stream order 
were computed and compared to each 
other, exclusive of the SWFWMD 
ground-truth. The goal was to 

Figure 2: Strahler (1952) stream ordering hierarchy where the smaller streams (order 1) 
flow into consecutively larger (order 2) streams, and so on.
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determine the extent of agreement 
among the lidar-derived DEMs for 
Strahler orders 1–4. The second analysis 
entailed using ArcGIS Pro to “select” the 
stream network as derived from each 
DEM for comparison to the SWFWMD 
ground-truth network.

3DHP modeling approach
An ArcGIS Pro workflow focusing on 
the continuous flow At algorithm was 
developed. The Derive Continuous 
Flow (Spatial Analyst) tool was used to 
construct the flow-direction and flow-
accumulation rasters from each of the 
three DEMs. The stream raster network 
was derived from these rasters using a 
flow accumulation of 6 acres (261,360 
square feet) and specifying Strahler 
stream ordering (see Figure 2; Strahler, 
1952) using the Derive Stream as Raster 
tool. The stream raster network was 
vectorized using the Stream to Feature 
tool and the flow-direction raster that 
was previously generated (Figure 3).

Results and discussion
The analysis of the resulting flowline 
networks focused on two aspects: (1) 
the numbers and lengths of Strahler 
order 1–3 reaches (see Figure 2), as 
these represent the SLDs and channels 
that would be represented in the EDH 
updates, and (2) the agreement between 
the modeled flowline networks and the 
SWFWMD ground-truth.

Flowline network composition 
(number and length)
As expected, the flowline network com-
position was similar for each DEM-type 
for both watersheds. In the non-dis-
turbed Brooker Creek watershed, there 
was a slight tendency for more flowlines 
to be observed in Strahler orders 1–3 

Figure 3: Esri ArcGIS Pro 
ModelBuilder schematic for 
continuous flow At 3DHP workflow. 

BROOKER CREEK
DEM type USGS/QL2 (LM) GM USGS/QL1 (LM)

Strahler order 1: <50 m (164’)

Number of reaches 90 82 66

Linear miles 1.2 1.2 1.1

Average length (feet) 71.4 78.2 82.4

Length range (feet) 1.2 – 160.6 0.8 – 159.9 1.2 – 162.8

Strahler order 1: all lengths

Number of reaches 544 570 559 

Linear miles 103.9 116.1 113.6

Strahler order 2

Number of reaches 268 301 277

Linear miles 55.6 60.8 69.5

Strahler order 3

Number of reaches 152 156 151

Linear miles 35.6 36.1 36.5

Totals (orders 1–3)

Number of reaches 964 1027 987

Linear miles 195.1 213.0 219.6

Table 1: Numbers of flowlines and length statistics for Strahler stream orders 1-3 derived from 
three different DEMs for the Brooker Creek watershed.
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from the GM-derived DEM relative 
to either of the LM-derived DEMs 
(Table 1). However, the total number 
of linear miles of reaches modeled is 
slightly larger from the QL1 LM-derived 
DEM, 219.6 miles, than from the QL2 
LM- or GM-derived DEMs, 195.1 and 
213.0 miles respectively.

Curiously, although the network com-
position metrics for the small, Strahler 
order 1 reaches, i.e., those that are below 
the USGS/EDH length threshold (50 m; 
164’), totaled approximately the same 
length among the DEMs (~1.1 miles), 
the QL1-derived DEM resulted in 26% 
fewer flowlines than the QL2-derived 
flowlines and almost 20% fewer lines 

than the GM-derived flowlines. 
Nevertheless, although the average 
length of the flowlines modeled from 
QL1-derived DEMs was larger than 
either the QL2- or GM-derived DEMs, 

the difference between any was not 
significant (F2,235 = 0.96, p = 0.38).

In Cross Bayou Canal/Lake Seminole 
too, the three lidar-derived DEMs 
produced similar network metrics for 
Strahler orders 1-3, with the USGS/
QL1 DEM resulting in the longest 
flowline network: 718.1 miles compared 
to 702.6 miles and 706.9 miles for the 
QL2 and GM-derived flowline networks 
respectively (Table 2). Again, the slight 
differences in combined flowline length 
cannot be attributed to the difference of 
the lidar-derived DEMs. 

In this urbanized watershed, however, 
the between-DEM variance for stream 
length in the small Strahler order 1 
flowlines less than 50 m is significantly 
different (F2,1022 = 5.15, p = 0.005), 
indicating that the length of the small 
upper reaches is dependent on the 
original DEM used for the modeling, 
the LM-derived DEMs yielding 
longer upper-level reaches than the 
GM-derived DEM.

Flowline network geometry
While the flowline network composi-
tion metrics do not show significant 
differences that could be attributed 
to the underlying DEMs, their spatial 
geometries, especially in wetlands, are 
considerably different. As an example, in 

Figure 4: Comparison of flowlines in wetlands at Brooker Creek Preserve, derived from 
continuous flow. modeling: (A) area of close similarity between the QL1- and GM-derived 
flowlines; (B) area of divergence between the three DEM-types.

CROSS BAYOU CANAL/LAKE SEMINOLE
DEM-type USGS/QL2 (LM) GM USGS/QL1 (LM)

Strahler order 1: <50 m (164’)

Number of reaches 307 349 369

Linear miles 5.1 4.9 5.6

Average length (feet) 86.8 75.4 79.7

Length range (feet) 7.5 – 163.6 5.3 – 163.9 3.7 – 163.7

Strahler order 1: all lengths

Number of reaches 2305 2313 2348

Linear miles 398.8 393.6 400.0

Strahler order 2 

Number of reaches 1152 1140 1198

Linear miles 205.5 206.6 216.7

Strahler order 3

Number of reaches 576 575 543

Linear miles 98.3 106.7 101.4

Totals

Number of reaches 4033 4028 4089 

Linear miles 702.6 706.9 718.1

Table 2: Numbers of flowlines and length statistics for Strahler stream orders 1-3 derived from 
three different DEMs for the Cross Bayou Canal/Lake Seminole watershed.
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the Brooker Creek watershed, the three 
DEMs produced completely different 
paths through wetland areas (Figure 4). 

In the more urbanized Cross Bayou 
Canal/Lake Seminole watershed, there 
are also areas where the flowlines are in 
close agreement among all three DEM-
types (Figure 5A), as well as areas where 
there is little agreement (Figure 5B). In 
the urban areas, there were several areas 
where the GM-derived DEM resulted in 
flowlines that stopped, whereas the QL1 
lidar-derived DEMs provided continuity 
(Figure 5C).

Comparison to SWFWMD ground-truth
As indicated previously, the SWFWMD 

lidar specification prescribes that all 
channelized features are captured as 
either single-line (less than 8’ wide) 
or double-line (greater than 8’ wide) 
drains. The SLDs in the watersheds 
were buffered to produce polygons 
and used to clip the flowlines resulting 
from each of the three DEM-types. 
The total lengths of the clipped lines 
were summarized (Tables 3 and 4) 
to indicate the degree of agreement 
between flowlines and the ground-truth 
for each DEM-type. In both watersheds, 
there was over 93% agreement between 
the QL1 LM-derived flowlines and 
the SWFWMD ground-truth. The 
GM-derived DEM performed slightly 

better in the Brooker Creek watershed 
(92.6% agreement) than it did in the 
Cross Bayou Canal/Lake Seminole 
watershed (81.4% agreement). Both 
the QL1- and GM-derived DEMs 
performed better in both watersheds 
than the QL2-derived DEM.

Parting comments
The British statistician, George Box, is 
frequently noted for saying that, “All 
models are wrong, some are useful” 
(Box and Draper, 2007, 414). While Box 
was talking about statistical models, the 
same could easily be applied to DEMs. 
We always need to remember that the 
DEM is a model of the earth, and that 

Figure 5: Comparison of flowlines at Cross Bayou Canal/Lake Seminole, derived from continuous flow modeling: (A) - area of close similarity 
between the QL1- and GM-derived flowlines; (B) - area of divergence between the three DEM-types; and (C) - area where QL1 lidar-derived DEMs 
resulted in continuous flow paths; there are other similar areas in the watershed.

2024 VOL. 14 NO. 2  LIDARLIDAR   31



the results are further abstracted as a 
result of the continuous flow At model 
used to produce the flowlines. With 
that caveat and with respect to using 
lidar-derived DEMs for EDH for these 
two watersheds, therefore, we conclude:

1. Small upper reaches, under the EDH 
threshold, were equally well resolved in 
the non-urbanized watershed (Brooker 
Creek), but in the urban environment 
(Cross Bayou Canal/Lake Seminole), 
both LM-derived DEMs resolved 
significantly more flowlines. This may 
have resulted from the algorithms used 
by the lidar providers to decimate 
the GM lidar. The decimation or 
smoothing had little effect in the 
rural terrain, where the LM lidar also 
produced a smoother DEM. In the 
urban terrain, however, the LM lidar 
point clouds were more detailed and 
provided additional definition for 
those upper reaches.

2. In terms of total network length 
and reach-number metrics, each 
of the DEMs performed well, and 
the metrics were not significantly 
different. But in both watersheds, 
the QL1-derived DEMs produced 
slightly more reaches and a slightly 
longer network.

3. Geometric differences that could be 
attributed to the DEM were most strik-
ing when the flowlines were compared 
to SWFWMD ground-truth. In both 
watersheds, the QL1-derived DEMs 
produced a geometric network that 
more closely resembled the ground-
truth. Again, possibly as a result of the 
decimation algorithm used for the GM 
lidar, the QL1 advantage was greater in 
the urban watershed (93.6% vs. 81.4% 
agreement) than in the rural watershed 
(93.4% vs. 92.6%).

4. Overall, both the QL1 and GM 
high-density lidar-derived DEMs 

outperformed the lower-density 
QL2-derived DEM for EDH extrac-
tion. Future comparisons between 
the high-density technologies need 
to account for GM decimation 
and other low-level lidar process-
ing differences, such as DEM 
construction methodologies and 
hydro-conditioning techniques. 
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CROSS BAYOU CANAL/LAKE SEMINOLE
DEM-type

SWFWMD
ground-truth

USGS/QL2 
(LM)

Geiger-
mode

USGS/QL1 
(LM)

Linear miles of 
channelized features
(% of ground-truth)

56.71
38.59 

(52.9%)
47.80 

(81.4%)
53.29 

(93.6%)

BROOKER CREEK
DEM-type

SWFMWD 
ground-truth

USGS/QL2 
(LM)

GM
USGS/QL1 

(LM)

Linear miles of
channelized feature
(% of ground-truth)

7.89
5.86 

(66.9%)
7.34 

(92.6%)
7.41 

(93.4%)

Table 3: Comparison of continuous flowlines extracted from lidar-derived DEMs with 
SWFWMD ground-truth in the Brooker Creek watershed.

Table 4: Comparison of continuous flowlines extracted from lidar-derived DEMs with 
SWFWMD ground-truth in the Cross Bayou Canal/Lake Seminole Watershed.
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A ccurate geospatial data on 
surface water and drainage 
is crucial for planning, 

engineering, and daily operational 
activities for every county in every 
state. Nevertheless, Ohio has coped 
for decades without a full set of timely, 

comprehensive geospatial surface water 
and drainage data. This shortfall has 
prevented public and private stakehold-
ers, including engineers, farmers, and 
developers, from understanding current 
drainage scenarios and engineering 
effective subsurface drainage solutions. 
The outdated data has also impacted 

the effectiveness of Ohio’s water quality 
programs and the development and 
construction of numerous county 
infrastructure projects, all of which rely 
upon relevant geospatial insights.

Until recently, Ohio’s existing 
drainage information came from the 
National Hydrography Dataset (NHD)1, 
which outlines rivers, streams, canals, 
lakes, ponds, and other water bodies 
to generate comprehensive, national 
hydrography insights. Within the NHD, 
Ohio’s data was based on the digitiza-
tion of surface water features from 
1:24,000 U.S. Geological Survey (USGS) 
topographic maps created as far back 
as the 1950s. The accuracy and level of 

1 usgs.gov/national-hydrography/national-
hydrography-dataset BY BRIAN STEVENS

The existing national hydrography dataset. 
Image courtesy of the Ohio Statewide Imagery Program. 
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The Ohio Surface Water Model dataset. 
Image courtesy of the Ohio Statewide Imagery Program.

detail of these federal maps have been 
outpaced in recent decades by changing 
landscapes and advancing mapping 
and recording technologies. As a result, 
Ohio’s NHD dataset needed an update.

“Our watershed data was outdated,” 
said Jeff Linkous, engineer, Clinton 
County. “It didn’t accurately depict 
where the true flow of water existed. 
This was mainly due to changes over 
time that streams experienced, not only 
from human development but also from 
high water and flooding. Our county 
would benefit from accurate data.”

To provide those benefits, Woolpert 
developed the Ohio Surface Water 
Model, an initiative owned and managed 
by the Ohio Geographically Referenced 
Information Program (OGRIP), which 
is overseen by the Ohio Department 
of Administrative Services (ODAS) 

Office of Information Technology. 
The program was designed to replace 
Ohio’s hydrography data with elevation-
derived hydrography (EDH). Currently, 
11 Ohio counties have led the way 
by supporting the replacement of the 
existing hydrography dataset. Without 
any financial assistance, the counties 
funded the updates to the surface water 
and drainage data for their respective 
localities, knowing that this would meet 
critical needs. Their decision to put 
money towards replacing their data was 
commended by several state legislators 
and Ohio organizations such as the 
County Engineers Association of Ohio, 
the County Commissioners Association 
of Ohio, The Nature Conservancy 
in Ohio, and the Ohio Scenic Rivers 
Association. With widespread support, 
Woolpert has continued promoting 

the creation of EDH data for additional 
counties. Meanwhile, state agencies and 
legislators are exploring the best way 
to expand the effort and partner with 
the USGS, as was done with the 3D 
Elevation Program2, a USGS initiative 
created to deliver high-resolution, three-
dimensional elevation data of the U.S.

Leveraging 3DEP and 3DHP
Since 1884, USGS has been mapping the 
nation, delivering critical topographic 
and hydrographic insights supporting 
land management and development 
across the U.S. As a result of crucial 
advances in mapping technologies, 
USGS started gathering high-quality 
topographic data in 2016 for one of its 
latest efforts: 3DEP, the first national 

2  usgs.gov/3d-elevation-program 
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baseline of consistent, high-resolution 
topographic elevation data. USGS 
wanted to derive all new hydrography 
from 3DEP data. This effort started 
with developing consistent standards 
and specifications for EDH, which 
relies on elevation data from lidar or 
interferometric synthetic aperture radar 
to generate vector hydrologic networks.

When Woolpert and OGRIP launched 
the Ohio Surface Water Model for several 
counties, it leveraged the elevation data 
available from 3DEP to provide high-
resolution hydrographic data for EDH 
development. Woolpert also relied on the 
3D Hydrography Program (3DHP)3, the 
USGS initiative designed to “significantly 
improve the level of detail, currency, and 
content of hydrography data by deriving 
3D stream network datasets and water-
sheds from the high-quality 3D Elevation 
Program.” Specifically, the Ohio Surface 
Water Model includes an EDH network 
generated from and integrated with 3DEP 
elevation data that is intended for input 
into 3DHP to provide data accuracy 
and the attributes needed to model and 
analyze Ohio’s surface water and coastline 
as well as better represent stream 
gradients, channel conditions, water 
bodies, hydrologic units, hydrologically 
enhanced elevation, and other surfaces.

“Surface water bodies are very 
dynamic,” said Neil Tunison, engineer, 
Warren County. “They change. They 
drop sediments, and they’re constantly 
adjusting course. Having this data 
[updated] on a fairly regular basis will 
help us with planning.”

Still, Woolpert and OGRIP wanted 
to take things a step further. Baseline 
3DHP data derived from 3DEP lidar for 
the continental U.S. represents streams 

3  usgs.gov/index.php/3DHP 

and canals as polygons for features 50 
feet and wider and lakes and ponds 
greater than about ¼ acre. One of the 
goals of the Ohio Surface Water Model 
was to ensure the dataset also included 
ephemeral water when evident on the 
elevation surface per EDH specifications. 
Ephemeral water is surface water that 
flows briefly in direct response to 
precipitation in the immediate vicinity. 
Counties, state agencies, and several 
organizations conveyed their need for 
Woolpert to collect polygonal data on 
perennial water for 15-foot or wider 
streams and rivers, ephemeral flowlines, 
and lakes and ponds greater than ¼ acre. 
Once the hydrography was completed 
for the 11 Ohio counties, contours were 
generated, which the counties plan to use 
for a wide range of applications, includ-
ing preliminary engineering, planning, 
and economic development. Achieving 
this would enable Woolpert and OGRIP 
to capture hydrographic features at a 
four- to six-times-greater level of drain-
age detail than is currently available, and 
core attributes of the hydrography would 
be identified and defined for all features 

gathered. However, achieving this with 
the Ohio Surface Water Model required 
innovative technologies.

Exceeding expectation demands 
exceedingly powerful technology
Woolpert used artificial intelligence (AI) 
and machine learning (ML) to generate 
the 3DHP data for the Ohio Surface 
Water Model, followed by manual 
verification to increase confidence that 
the information produced was accurate. 
These technologies assisted in identifying 
drainage patterns that affect flooding 
characteristics, stream flows, and water 
quality. Traditionally, 3D photogrammet-
ric techniques or heads-up digitization 
from orthoimagery base-mapping was 
relied upon to compile hydrography data 
manually. Although time-consuming 
and laborious (especially when used for 
large areas), these techniques successfully 
identified perennial bodies of water for 
decades. They fell short, however, in their 
ability to identify ephemeral water bodies 
and drainage patterns.

Woolpert needed new technology 
to gather the desired data as well as 

The lidar surface model overlaid with perennial and ephemeral surface water and flowlines.
Image courtesy of the Ohio Statewide Imagery Program.
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new processes to extract hydrography 
features from the ingested datasets. 
The new datasets typically included 
four-band orthoimagery and high-
density aerial lidar at a density of eight 
points per square meter or more. When 
considering the varied topography 
across states, counties, and watersheds, 
no existing manual methods could 
extract ephemeral drainage effectively 
or accurately. The solution was AI and 
ML. Using high-density aerial lidar 
input consisting of millions or billions 
of points for a statewide project, AI and 
ML processes successfully identified 
ephemeral flowlines as well as small 
lakes, ponds, rivers, and streams.

The promising features  
of AI and ML
AI and ML proved to be the best 
solutions for producing the desired 
3DHP enhancements due to their 
promising capabilities for mapping 
surface features, especially when 

coupled with cloud computing. For 
example, Woolpert used AI to extract 
features automatically from aerial lidar 
and determine the flow direction and 
definition of specific water bodies. 
Microsoft Azure Machine Learning 
Studio was instrumental in Woolpert’s 
effort to develop, deploy, and manage 
these models effectively and with 
increased confidence. Additionally, 
cloud computing enabled Woolpert to 
store and process the large quantities 
of remote sensing data essential for 
mapping large areas. Combined, these 
technologies improved the precision, 
efficiency, and scalability of EDH.

Ohio counties ready to benefit
With enhanced EDH ready to be added 
to Ohio’s portion of the 3DHP dataset, 
the state is finally positioned to experi-
ence much-needed advantages.

“Clinton County will benefit from 
accurate data, as it will help with 
everything, including culvert and bridge 

modeling, road realignment for safety 
projects, flood plain review, and soil and 
water maintenance ditches,” Linkous 
said. “It will also help us provide the 
public with current data that assists with 
planning and economic development 
proposals.”

Tunison also expressed excitement 
about the advantages the updated data 
would provide. He explained that he’s 
eager to incorporate the information 
with Warren County’s structural data, 
“… to get a better handle on the types 
of bridges and culverts that need to be 
replaced and how to handle inlets.”

When explaining the infrastructure 
benefits the updated hydrography will 
provide, Brett Boothe, engineer, Gallia 
County, said: “The benefits are very 
broad. I see opportunities for us to use 
the data to size our bridges, culverts, 
catch basins, and any other drainage 
structures because we’re using better 
data to make decisions. Also, since the 
county lies along the Ohio River, one 
of the issues we contend with is flood 
plains. We have commercial and resi-
dential properties within the flood plain. 
This data will give us a better opportunity 
to define where those lines are, which 
makes a big difference when we’re 
talking about our county’s economic 
and residential development. We all 
know flood-plain insurance is extremely 
expensive and hinders our growth, so this 
data will be extremely important from an 
economic perspective.” 

Brian Stevens is a 
geospatial program director 
and vice president at 
Woolpert. He works out of 
Woolpert’s office in 
Columbus, Ohio.

This image showcases the high-resolution complement to existing base mapping data. 
Image courtesy of the Ohio Statewide Imagery Program.
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T his highlight article was inspired by a comment I 
received from Richard C. Maher, PLS, president of 
KDM Meridian:

“I attended both of your American Society for 
Photogrammetry and Remote Sensing (ASPRS) workshops 
during Geo Week 2024 in Denver. Even after 24 years as a 
land surveyor, I can still use refreshing on how to explain the 
basics to my clients and surveyors-in-training. Your in-depth 
discussion on the difference between the standard deviation 
and the root mean square error (RMSE) was very appreciated. 
I also appreciated the concepts of the true datum and the 

survey (pseudo) datum you introduced. As one who loves 
to test and prove that our equipment can rarely do better 
than the specifications, I’ll say unequivocally that surveyors 
using real-time kinematic (RTK) positioning are far too 
optimistic about their true accuracy and commonly don’t 
understand apparent relative accuracy due to a fundamental 
misunderstanding of the error sources different between GPS 
and conventional measurements. The nature of random error 
in GPS follows a different stochastic model than conventional 
instrumentation. If surveyors simply employed the same 
checking standards and methods you prescribe in the ASPRS 

BY QASSIM ABDULLAH

Figure 1: Standard deviation measures the error fluctuation around a mean value of 0.17 m.

BEST PRACTICES  
in Evaluating Geospatial Mapping 
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in ground control 
network into 
account
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specifications, they’d stop telling me how well their GPS 
did under a canopy, or how they can get “hundredths.”  My 
intention isn’t to make their work more difficult but to ensure 
that our methods are rigorous and reliable... I’m interested 
in seeing your future appendix that talks about suggested 
survey accuracies when not provided by surveyors. Due to 
the importance of these topics to the thousands of practicing 
surveyors in the nation who could not attend Geo Week, could 
you please shed light on the concepts you presented in Denver 
regarding surveying and mapping accuracy and the role of the 
correct understanding of the datum?”

In my response to this request, I will address these impor-
tant issues in separate sections.

Standard deviation versus root mean square 
error (RMSE) estimation
Before we discuss the difference between standard deviation 
and RMSE as accuracy measures, let us elaborate on the 
statistical meaning of each.

Standard deviation is a statistical measure of the fluctuation 
or dispersion of individual errors around the mean value of 
all the errors in a dataset. Figure 1 illustrates how the errors 
fluctuate around a mean error value of 0.16 m. This fluctua-
tion is represented by the standard deviation value, or 0.07 m. 

The standard deviation is calculated as the square root of 
variance by determining each error’s deviation relative to the 
mean as given in the following equation:  
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Figure 1: Standard deviation measures the error fluctuation around a mean value of 0.17 m. 
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where:  
𝑥𝑥 is the mean error in the specified direction, 

 𝑥𝑥!  is the ith error in the specified direction, 
n is the number of checkpoints tested, 
i is an integer ranging from 1 to n. 

 

where: 
x is the mean error in the specified direction,
xi is the ith error in the specified direction,
n is the number of checkpoints tested,
i is an integer ranging from 1 to n.

RMSE is the square root of the average of the set of squared 
differences between dataset coordinate values and coordinate 
values from an independent source of higher accuracy for 
identical points. It is obvious from this definition that RMSE 
differs from standard deviation by the magnitude of the 
mean error existing in the data. This becomes clear from 

the difference between the previous equation, defining the 
standard deviation, and the following RMSE:
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where: 
𝑥𝑥"(()*) is the coordinate in the specified direction of the ith checkpoint in the dataset,	
𝑥𝑥"(,-./0102) is the coordinate in the specified direction of the ith checkpoint in the independent 
source of higher accuracy, 
n is the number of checkpoints tested, 
i is an integer ranging from 1 to n. 
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spectrum of the error found in a checkpoint, including the mean error, whereas, in computing the 
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the fluctuation of individual errors around the mean value of all the errors. This RMSE characteristic 

makes it useful in flagging biases in data, as it provides an early warning system for the technician that 

the standard deviation fails to do.  
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where: 
xi(map) is the coordinate in the specified direction of the ith 
checkpoint in the dataset,
xi(surveyed) is the coordinate in the specified direction of the ith 
checkpoint in the independent source of higher accuracy,
n is the number of checkpoints tested,
i is an integer ranging from 1 to n.

When RMSE is computed, we do not subtract the mean 
checkpoint error, so RMSE represents the full spectrum of 
the error found in a checkpoint, including the mean error, 
whereas, in computing the standard deviation, we subtract the 
mean error from every checkpoint error, making it a measure 
of the fluctuation of individual errors around the mean value 
of all the errors. This RMSE characteristic makes it useful in 
flagging biases in data, as it provides an early warning system 
for the technician that the standard deviation fails to do. 

Biases and systematic errors in data
Now we understand the difference between the standard 
deviation and RMSE, let us see how such favoring of the 
RMSE helps the geospatial mapping production process and 
validation of the accuracy of its products. Geospatial mapping 
products are subject to systematic errors or biases from a vari-
ety of sources. These biases can be caused by things like using 
the wrong version of a datum during the product production 
process, or using the wrong instrument height for the tripod 
during the survey computations for the ground control points 
or the checkpoints. There are other sources of biases that can 
be introduced during the production process. For instance, 
using the wrong elevation values in digital elevation data can 
result in biases during the orthorectification process, and 
using the wrong camera parameters (such as focal length) or 
the wrong lens distortion model can lead to biases in the final 
mapping product.

Systematic error can cause the product to fall below 
acceptable project accuracy levels. Thankfully, provided the 
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appropriate methodologies are applied, systematic error can 
be identified, modeled, and removed from the data. This is 
not the case with random error: even if we discover it, we 
cannot eliminate it. However, we can minimize random error 
magnitude through adherence to a stringent production 
process, adopting sound quality control practices, or the use of 
more accurate instruments. To illustrate systematic errors or 
biases in data, we will evaluate the scoreboards of four archers 
who vary in their aiming skills, illustrated in Figure 2. 

For Board A, the archer landed the arrows around the 
bullseye, but the shots are scattered spatially around the center 
point. By contrast, Board B reflects good spatial clustering, 
but the shots are clustered around a point far away from the 
bullseye. Board C is what one wants accuracy to be, with all 
shots clustered at the aimed spot. Board D demonstrates 
extremely undesirable results, possessing neither good 
clustering, nor good aiming. 

When we measure accuracy, results like boards B and C 
are the most desirable. Board C should be preferred, as it 
represents clean results: All shots are at the bullseye. We can 
describe archer C as “accurate and precise.” Although archer 
B’s results lack good aim, the shots are clustered well. We 
describe archer B as “precise but not accurate.” Even though 
archer B is not accurate, why are these results still acceptable? 
Examine the scoreboard for archer B again: if we shift the 
locations of all the clustered arrows by a fixed distance d, or 
7.0 cm, the results will match the results from archer C. This 
distance d or 7.0 cm represents the systematic error; once it is 
corrected, the final accuracy will be satisfactory.

But why did such a precise archer miss the bullseye to begin 
with? We must consider what may have taken place at the 

archery range to cause archer B to miss. Perhaps the archer 
was using a sight scope hooked to the archer bow. Having all 
the arrows land in a tight cluster away from the bullseye is a 
strong indication of a mechanical failure of the sight scope 
that caused the arrows to go to the wrong place. Once archer 
B’s sight scope is properly calibrated, the archer scoreboard 
in the second archery session will look just like archer C’s 
board. The same logic can be applied to geospatial products 
such as lidar point clouds or orthoimagery. That is why it is 
crucial to use accurate checkpoints when verifying product 
accuracy. These checkpoints will help us quantify any existing 
systematic errors, allowing us to remove this error from the 
data in the same way that properly calibrating archer B’s sight 
scope corrects the archer future shots.

True datum versus surveying pseudo datum
When we conduct field surveying, we are trying to determine 
terrain positions and shapes with reference to a specific geo-
detic datum. According to the U.S. National Geodetic Survey 
(NGS), a geodetic datum is defined as “an abstract coordinate 
system with a reference surface (such as sea level, as a vertical 
datum) that serves to provide known locations to begin 
surveys and create maps.” Because our surveying techniques, 
and therefore our mapping techniques, are not perfect, our 
surveying techniques provide only approximate positions that 
put us close to the true, datum-derived positions (Figure 3). 
When we use an inaccurately surveyed network to control 
another process such as aerial triangulation, we are fitting the 
aerial triangulation solution to an observed datum. The degree 
of approximation depends on the accuracy of the surveying 
technique or technology employed in that survey. The RTK 

Figure 2: Scoreboards for four archers with varied aiming skills. 
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field surveying technique, for example, can produce positions 
that are accurate to 2 cm horizontally and perhaps 2-3 cm 
vertically. The differential leveling technique used to deter-
mine height can produce elevations that are accurate to the 
sub-centimeter. The lesson to learn here is that our surveying 
techniques, no matter how accurate, do not represent the true 
datum—but they can get us close to it.

Surveying and survey (pseudo) datum
When we task surveyors to survey the ground control network 
with reference to a certain datum, usually a true datum such 
as NAD83 or WGS84, they can determine the positions of the 
control network to that datum only as close as the surveying 
techniques allow. In other words, the coordinates used to 
control the mapping process represent an observed or survey 
datum that forms a pseudo datum, green mesh in Figure 3, 
but not the original intended or true datum represented by 
the solid green in Figure 3. For example, if we are trying to 
determine point coordinates in NAD83(2011), the surveyed 
coordinates used in aerial triangulation or lidar calibration 
represent a datum that is close to NAD83(2011) but not 
exactly NAD83(2011), due to the inaccuracy in our surveying 
techniques. That inaccurate survey represents a survey datum. 
Besides the inaccuracy in the surveying techniques, another 
layer of errors (i.e., distortion) could be added to the surveyed 
coordinates when we convert geographic positions (in latitude 

and longitude) to projected coordinates or grid coordinates, 
such as state plane coordinate systems. 

Mapping to the mapping datum
Any mapping process we conduct today inherits two modeling 
errors that influence product accuracy. The first modeling 
error is caused by the inaccuracy of the internal geometric 
determination during the aerial triangulation, or the boresight 
calibration in the case of lidar processing. The second 
modeling error is introduced by the auxiliary systems, such as 
GNSS and IMU, and has inherent errors caused by the survey 
datum. Therefore, when we use mapping products to extract 
location information, we are determining these locations with 
reference to the survey or pseudo datum and not the true 
intended datum. The point coordinates for NAD83(2011) are 
determined not according to the survey datum of the ground 
control network but through a new reality of mapping datum. 
The mapping datum, represented with the blue mesh in 
Figure 3, inherits the errors of the survey datum, which were 
caused by the inaccuracy of our surveying techniques and the 
errors caused by our mapping processes and techniques. 

Correct approach to accuracy computation
To reference the accuracy of determining a mapped object 
location within a mapping product with reference to the 
original intended datum such as NAD83(2011), we need to 

examine the layers of error that were 
introduced during the ground surveying 
and mapping processes (Figure 3). 

Currently, users of geospatial data 
express product accuracy based on 
the agreement or disagreement of 
the tested product with respect to 
the surveyed checkpoints, ignoring 
checkpoint or ground control errors 
that have resulted from inaccurate 
surveying techniques. In other words, 
users consider the surveyed points to 
be free of error. The following section 
details how errors are propagated into 
the mapping product when we are 
trying to determine the location of a 
ground point “A”. Let us introduce the 
following terms—refer to Figure 3 for 
localizing such error terms:Figure 3: Datums and error propagation in geospatial data.
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ACCSurveyDatum equals the accuracy in determining the survey 
datum, generated when realizing the intended or true datum 
through surveying techniques. In other words, it represents 
the errors in the surveyed checkpoints. Due to this inaccuracy, 
the point will be located at location A.. (Figure 4).

ACCMappingDatum equals the accuracy of determining the 
mapping datum, or the errors introduced during the mapping 
process, with reference to the already inaccurate survey datum 
represented by the surveyed checkpoints. In other words, it is 
the fit of the aerial triangulation (for imagery) or the bore-
sight/calibration (for lidar) to the surveyed ground control 
points represented as the survey datum. This accuracy is 
measured using the surveyed checkpoints during the product 
accuracy verification process. Due to this inaccuracy, the point 
will be located at location A... (Figure 4).

ACCTrueDatum equals the accuracy of the mapping product 
with reference to the true datum, for example NAD83(2011). 
The point location A. (Figure 4) is considered the most 
accurate location determined with reference to the true datum.

Using the above definitions, the correct product accuracy 
should be modeled using error propagation principles accord-
ing to the following formula:

ACCTrueDatum
 = √ACCMappingDatum

2 + ACCSurveyDatum
2 EQ1

However, according to our current practices, product accu-
racy is computed according to the following formula, ignoring 
errors in the surveying techniques:

ACCTrueDatum
 = ACCMappingDatum EQ2

More details and examples on the suggested approach can 
be found in my published article1 on the topic and Edition 
2 of the ASPRS Positional Accuracy Standards for Digital 
Geospatial Data2.

The new approach to computing map accuracy
According to this new approach to computing map accuracy 
and since we are dealing with three-dimensional error 
components, we would need to employ vector algebra to 
accurately compute the cumulative error.

1 Abdullah, Q., 2020. Rethinking error estimations in geospatial 
data: the correct way to determine product accuracy, Photogram-
metric Engineering & Remote Sensing, 86 (7): 397-403, July 2020.

2 publicdocuments.asprs.org/PositionalAccuracyStd-Ed2-V1 

Computing horizontal accuracy
To compute the horizontal accuracy for a two-dimensional 
map, as with orthorectified imagery, we will ignore the error 
component of the height survey. In other words, we will 
use the error component from easting and northing only. 
We will also assume that the accuracy of determining the X 
coordinates (or eastings) is equal to the accuracy of determin-
ing the Y coordinates (or northings). Using error propagation 
principles and Euclidean vectors in Figures 4 and 5, we can 
derive the following values for product horizontal accuracy: 

AccXTrueDatum
 = √AccXMappingDatum

2 + AccXSurveyDatum
2 EQ3

AccYTrueDatum
 = √AccYMappingDatum

2 + AccYSurveyDatum
2 EQ4

AccXYTrueDatum
 = √AccXTrueDatum

2 + AccYTrueDatum
2 EQ5

Figure 4: Influence of 
error propagation on point 
location accuracy.
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As an example, when modeling horizontal product accuracy 
according to the above formulas, let us assume the following:

a. We are evaluating the horizontal accuracy for orthoimag-
ery using independent checkpoints.

b. The control survey report states that the survey for the 
checkpoints, which was conducted using RTK tech-
niques, resulted in accuracy of RMSEXorY equal to 2 cm.

c. When the checkpoints were used to verify the horizontal 
accuracy of the orthoimagery, the result was an accuracy 
of RMSEXorY equal to 3 cm.

Thus, from equations 3, 4 and 5:

AccXTrueDatum
 = √32 + 22  = 3.61cm EQ3

AccYTrueDatum
 = √32 + 22  = 3.61cm EQ4

AccXYTrueDatum
 = √3.61cm2 + 3.61cm2  = 5.1cm EQ5

The value of 5.1 cm is the true accuracy of the product versus 
the following value of 4.24 cm used commonly today that ignores 
the errors introduced during the ground surveying process:

AccXYTrueDatum
 = √3cm2 + 3cm2  = 4.24cm EQ5

Computing vertical accuracy
Similarly, for vertical accuracy determination of elevation data 
derived from lidar or photogrammetric methods, we need to 
consider the error in the surveyed elevation as an important 
component. Using error propagation principles and the 
Euclidean vectors of Figure 6, we can derive the following 
value for vertical product accuracy: 

AccZTrueDatum
 = √AccZMappingDatum

2 + AccZSurveyDatum
2 EQ6

As an example, when modeling vertical product accuracy 
according to the above formulas, let us assume that:

a. We are evaluating the vertical accuracy for a mobile lidar 
dataset using independent checkpoints.

b. The control survey report states that the survey of the 
checkpoints, which was conducted using RTK tech-
niques, resulted in an accuracy of RMSEZ equal to 3 cm.

c. When the checkpoints were used to verify the vertical 
accuracy of the lidar data, the results was an accuracy of 
RMSEZ equal to 1 cm.

Thus, from equation 6:

AccZTrueDatum
 = √12 + 32  = 3.61cm EQ6

The value of 3.16 cm is the true vertical accuracy of the 
lidar dataset, versus the value of 1 cm derived by the mapping 
technique used commonly that ignores the errors introduced 
during the ground surveying process.

Figure 6: Influence of error propagation on point elevation accuracy.

Figure 5: Vector representations of error components.
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The role of RMSE in  
revealing biases in data
Now, let’s see how we are going to 
assess the accuracy computations, 
and whether we can spot problems 
in the data. We assume a scenario in 
which systematic error was intro-
duced into a lidar dataset during the 
product generation. Say a technician 
used the wrong version of the geoid 
model when converting the ellip-
soidal heights of the point cloud to 
orthometric heights, which caused 
a systematic error or bias of 0.16 m 
in the computed elevation of the 
processed lidar point cloud. Table 1 
lists the results of the accuracy 
assessment where 30 checkpoints 
are used for the test. 

To analyze the accuracy results, 
first look at the error mean value 
in Table 1. We clearly notice that 
the mean error is high as compared 
to the RMSE and the standard 
deviation. The ASPRS Positional 
Accuracy Standards for Digital 
Geospatial Data advise that a mean 
error value that is more than 25% of 
the RMSE is an indication of biases 
in the data that need to be dealt 
with and resolved before accepting 
and delivering the lidar data. So, we 
will focus on the results in Table 1 
for further analysis. A high mean 
error value is a good indication that 
biases are present in the data, but 
we need to further investigate how 
high the mean value is compared to 
RMSE and standard deviation. Slight 
differences between these statistical 
measures’ values are acceptable. 
Looking at the results of Table 1, 
the mean error reaches 91% of the 
RMSE value, which is not acceptable 
according to the ASPRS standards. 

Table 1: Accuracy assessment for a biased dataset.

Point #
Surveyed Coordinates Lidar Error 

Values 
(m)Easting (m) Northing (m) Elevation (m) Elevation (m)

CP_1 746093.605 97840.580 332.708 332.469 0.239

CP_2 746084.481 97875.486 333.856 333.646 0.209

CP_3 746076.993 97906.423 334.791 334.636 0.155

CP_4 746069.043 97934.869 335.829 335.582 0.247

CP_5 746059.191 97968.525 336.837 336.708 0.129

CP_6 746051.284 97996.814 337.671 337.652 0.018

CP_7 746044.837 98025.039 338.717 338.553 0.163

CP_8 746036.494 98055.805 339.823 339.591 0.232

CP_9 746027.369 98082.550 340.646 340.513 0.134

CP_10 746019.781 98112.192 341.636 341.498 0.138

CP_11 746012.222 98144.373 342.792 342.577 0.215

CP_12 746006.094 98171.008 343.667 343.426 0.241

CP_13 745998.080 98196.380 344.486 344.326 0.160

CP_14 745987.766 98231.319 345.597 345.498 0.100

CP_15 745939.681 98221.349 347.036 346.789 0.247

CP_16 745950.670 98190.848 345.788 345.655 0.133

CP_17 745956.968 98166.660 344.999 344.795 0.204

CP_18 745966.818 98133.845 343.825 343.644 0.182

CP_19 745977.417 98100.689 342.676 342.489 0.187

CP_20 745986.146 98071.263 341.594 341.451 0.143

CP_21 745994.431 98044.637 340.573 340.505 0.068

CP_22 746003.437 98011.200 339.403 339.336 0.067

CP_23 746013.675 97977.662 338.426 338.185 0.241

CP_24 746020.633 97952.708 337.451 337.282 0.169

CP_25 746029.450 97922.620 336.316 336.219 0.097

CP_26 746037.820 97896.313 335.422 335.295 0.127

CP_27 746073.182 98205.333 343.418 343.186 0.231

CP_28 746137.202 98304.228 344.254 344.253 0.001

CP_29 746046.203 97866.550 334.320 334.253 0.067

CP_30 746056.297 97832.573 333.199 333.063 0.136

Number of Checkpoints 30

Minimum Error 0.001

Maximum Error 0.247

Mean Error 0.156

Median Error 0.157

Standard Deviation 0.069

RMSE 0.170

Horizontal Positional Accuracy (E & N) N/A

Vertical Positional Accuracy 0.170

3D Positional Accuracy N/A
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Table 2: Accuracy assessment after bias removal.

Point #
Surveyed Coordinates Biased Lidar Unbiased Lidar

Unbiased Error 
Values (m)Easting (m) Northing (m) Elevation (m) Elevation (m) Elevation (m)

CP_1 746093.605 97840.580 332.708 332.469 332.625 0.083

CP_2 746084.481 97875.486 333.856 333.646 333.802 0.053

CP_3 746076.993 97906.423 334.791 334.636 334.792 -0.001

CP_4 746069.043 97934.869 335.829 335.582 335.738 0.091

CP_5 746059.191 97968.525 336.837 336.708 336.864 -0.027

CP_6 746051.284 97996.814 337.671 337.652 337.808 -0.138

CP_7 746044.837 98025.039 338.717 338.553 338.709 0.007

CP_8 746036.494 98055.805 339.823 339.591 339.747 0.076

CP_9 746027.369 98082.550 340.646 340.513 340.669 -0.022

CP_10 746019.781 98112.192 341.636 341.498 341.654 -0.018

CP_11 746012.222 98144.373 342.792 342.577 342.733 0.059

CP_12 746006.094 98171.008 343.667 343.426 343.582 0.085

CP_13 745998.080 98196.380 344.486 344.326 344.482 0.004

CP_14 745987.766 98231.319 345.597 345.498 345.654 -0.056

CP_15 745939.681 98221.349 347.036 346.789 346.945 0.091

CP_16 745950.670 98190.848 345.788 345.655 345.811 -0.023

CP_17 745956.968 98166.660 344.999 344.795 344.951 0.048

CP_18 745966.818 98133.845 343.825 343.644 343.800 0.026

CP_19 745977.417 98100.689 342.676 342.489 342.645 0.031

CP_20 745986.146 98071.263 341.594 341.451 341.607 -0.013

CP_21 745994.431 98044.637 340.573 340.505 340.661 -0.088

CP_22 746003.437 98011.200 339.403 339.336 339.492 -0.089

CP_23 746013.675 97977.662 338.426 338.185 338.341 0.085

CP_24 746020.633 97952.708 337.451 337.282 337.438 0.013

CP_25 746029.450 97922.620 336.316 336.219 336.375 -0.059

CP_26 746037.820 97896.313 335.422 335.295 335.451 -0.029

CP_27 746073.182 98205.333 343.418 343.186 343.342 0.075

CP_28 746137.202 98304.228 344.254 344.253 344.409 -0.155

CP_29 746046.203 97866.550 334.320 334.253 334.409 -0.089

CP_30 746056.297 97832.573 333.199 333.063 333.219 -0.020

Number of Checkpoints 30

Minimum Error -0.155

Maximum Error 0.091

Mean Error 0.000

Median Error 0.001

Standard Deviation 0.069

RMSE 0.067

Horizontal Positional Accuracy (E & N) N/A

Vertical Positional Accuracy 0.067

3D Positional Accuracy N/A
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We also need to compare the RMSE to the standard devia-
tion. Note that they are 0.170 m and 0.069 m, respectively. 
An RMSE value more than twice the standard deviation is 
a strong indication that biases may be present in the data. 
Remember that, in the absence of systematic errors, i.e., 
biases, the RMSE and the standard deviation should be equal. 
This conclusion is also supported by the fact that the mean is 
twice as high as the standard deviation. 

Now that we have concluded that the data has biases in it, 
let us see how we will remove these without reproducing the 
product from scratch. For lidar data, we will need to raise 
or lower the computed heights for the point cloud by the 
amount of the bias—in this case, 0.16 m. Since the mean is a 
positive value, and the values in the “Error Values” column 
were computed by subtracting the lidar elevation from the 
checkpoint elevation, or:

Error =  Surveyed Elevation – Lidar Elevation

We can then conclude that the terrain elevation as 
determined from the lidar data is lower than that measured 
by the surveyed checkpoints. Thus, we need to raise the lidar 
elevations by 0.16 m. Table 2 illustrates the bias treatment we 
introduced above, where the modified accuracy assessment 
values are listed in column “Unbiased Error Values.” All we did 
here was raise, or z-bump, the elevations of the point cloud by 
the amount of the bias, 0.16 m.

Similarly, if such an analysis were conducted to investigate 
the horizontal positional accuracy of an orthoimage, all 
we would need to do is modify the coordinates of the tile’s 
header by the amount of the calculated biases without the 
need to reproduce the orthoimages. It is worth mentioning 
that removing the bias based on the “mean” value will not 
necessarily reduce the value of the RMSE by the same amount, 
as the degree of improvement in the recalculated RMSE 

Table 3:  Best predicted accuracies for surveying techniques1.

Survey Methodology
Best Predicted Accuracy Values (mm)

Horizontal Vertical 3D

Adjusted Closed Loop – Digital Levelling 5

Real Time Network Following Section C – 
Recommended Procedures 10 16 19

Real Time PPP After Convergence Following 
Section D – Recommended Procedures 15 24 28

Real Time Kinematic (RTK) Single 
Measurement Following Section B – 
Recommended Procedures

20 32 38

Closed Conventional Traverse Following 
Section E – Recommended Procedures 25 40 47

Real Time PPP After Convergence, Single 
Measurement 20 50 54

1  Addendum II of the ASPRS Positional Accuracy Standards for Digital Geospatial Data, Edition 2, V2.

“  I call on all professional societies, 
such as NSPS, ASPRS, ASCE, TRB, 
to lead a campaign to educate their 
members on the importance of this 
issue, and on all state agencies—
which are tasked with the professional 
certification of surveyors, mappers, 
and engineers—and NCEES to revise 
their certification testing materials to 
include topics raised in this article.”
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value depends on the value of the standard deviation. For 
datasets with low standard deviation value and low rates of 
fluctuation, removal of the biases will improve the RMSE by a 
more significant degree. With the data cleaned from the bias 
effect, all conditions for good accuracy results are satisfied 
and clearly presented in Table 2. The mean error is zero as the 
bias was removed, and the standard deviation and the RMSE 
values are equal. 

The new approach and challenges for users
As we introduced the new approach in modeling products’ 
accuracy, I was surprised by the following findings.

Survey accuracy and surveyors’ awareness
As expressed in equation 1, the new approach requires the 
user to enter an absolute accuracy figure for the surveyed local 
network. To my surprise, I found most surveyors I spoke with 
were either not aware of where to find this accuracy figure in 
the instrument processing report, or blindly trusted numbers 
in reports where the accuracy is presented as a quality 
measure that does not relate to the absolute accuracy as 
called for by the new approach. I reviewed several processing 
reports from some surveying instruments where such a figure 
approaches zero, for example 0.002 m.

Surveying instruments manufacturers and survey accuracy
To follow up on this, the ASPRS accuracy standard working 
group contacted several manufacturers of surveying instru-
ments, but we did not get straight answers to our request as 
most manufacturers do not report such absolute accuracy 
figures. To me, it seems that a reported accuracy figure of close 
to zero represents a precision measure from multiple survey 
sessions of the same point. Users of these instruments need to 
know that all current surveying instruments, no matter how 
accurate, cannot produce a surveying accuracy of 0.002 m. 

Surveyors’ and mappers’ power
Surveyors and other users of these instruments need to 
unite and exert their efforts with the surveying equipment 
manufacturers to provide access to the absolute accuracy of 
the network survey. Without it, we cannot comply with the 
accuracy assessment method dictated by the new ASPRS 
standards. For the time being, and until manufacturers 
provide us with this accuracy, Table 3—which we included 
in the forthcoming version of the ASPRS Positional Accuracy 

Standards for Digital Geospatial Data —can be used for 
the default accuracy values in situations where the survey 
accuracy is not available or known.

The need to revise the professional practice 
certification programs
The issues raised in this article are a clear indication of the lack 
of awareness among professionals about the very issue impact-
ing basic surveying and mapping practices. I call on all profes-
sional societies such as NSPS, ASPRS, ASCE, TRB, and others 
to lead an awareness campaign to educate their members on the 
importance of this issue. The time is right to start this campaign 
as we head toward an entire National Spatial Reference System 
(NSRS) modernization program, to which NOAA and NGS 
are leading us. The new North American Terrestrial Reference 
Frame of 2022 (NATRF2022) and the North American-Pacific 
Geopotential Datum of 2022 (NAPGD2022) will offer more 
accurate and evolving horizontal and vertical datums, which 
makes the issues raised in this article even more crucial to the 
success of our business. Similarly, I put forward a call to all state 
agencies—which are tasked with the professional certification 
of surveyors, mappers, and engineers—and NCEES to revise 
their certification testing materials to include topics raised in 
this article. Without doing this, we risk the health, safety, and 
welfare of the public. 

Note: This article is running in both Photogrammetric 
Engineering & Remote Sensing and LIDAR Magazine.

Woolpert Vice President and Chief Scientist Qassim 
Abdullah, PhD, PLS, CP, has more than 45 years of 
combined industrial, R&D, and academic experi-
ence in analytical photogrammetry, digital remote 
sensing, and civil and surveying engineering. When 
he’s not presenting at geospatial conferences 
around the world, Abdullah teaches photogramme-

try and remote sensing courses at the University of Maryland and 
Penn State, authors a monthly column for the ASPRS journal 
Photogrammetric Engineering & Remote Sensing, sits on NOAA’s 
Hydrographic Services Review Panel, and mentors R&D activities 
within Woolpert and around the world.
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Bathymetry Technical Center of Expertise 
(JALBTCX), and research universities, such 
as Oregon State University.

TPU considers the random (not 
systematic) errors associated with each 
lidar measurement and the fact that each 
lidar measurement is an estimate with an 
associated uncertainty. The uncertainty is 
a combination of multiple factors, includ-
ing but not limited to timing errors (GPS), 
and electrical and mechanical positioning 
errors (IMU). In the case of aerial lidar, 
laser ranging errors can be caused by scan 
angles, beam divergence, flying height, size 
of the laser footprint as the beam interacts 
with the ground and objects above the 
ground, as well as local environmental 
and/or atmospheric conditions. Any 
errors in lever-arm offsets and boresight 
calculations should be included in TPU 
calculations based on information derived 
from calibration tests. TPU models 
comprising Total Vertical Uncertainty 
(TVU) and Total Horizontal Uncertainty 
(THU) components are already widely 
used for acoustic survey systems, such as 
multi-beam echosounders, and can be 
easily extended to both topobathymetric 
and topographic lidar surveys.

The case for adding TPU 
to aerial topographic lidar
There are three logical arguments for 
including either a combined TPU or 
two separate measurements (THU and 
TVU) to the LAS specification:

1. Adding either would provide addi-
tional information to the end-user 
regarding each lidar measurement. 
In the current LAS specification 
(LAS 1.4 - R15)4, it is assumed that, 

4 asprs.org/wp-content/uploads/2019/07/
LAS_1_4_r15.pdf

barring systematic errors which 
should have been removed from the 
dataset, each measurement has the 
same precision. While attributes 
associated with each pulse, such 
as “Scan Angle Rank” are useful, 
there is no error associated with 
each to help the end-user assess the 
mechanical/optical accuracy. Adding 
TPU (or THU/TVU) would provide 
the end-user with information to 
help assess the non-systematic errors 
in the measurements.

2. Specifying either TPU or THU/TVU 
to the LAS file would be relatively 
simple and cost-effective. As Point 
Data Record (PDR) formats 1-5 
are being retired, other relevant 
fields such as GPS time are already 
required, and there are currently 
unused “ASPRS reserved” and/or 
“User Definable” values, so specifying 
TPU (or THU and TVU) would be 
relatively simple in a new PDR format.

3. TPU offers a consistent way to 
measure the uncertainty of each 
lidar-derived XYZ location and 
incorporates uncertainties from 
various sources that contribute 
towards the errors for each 
measurement as described above.

The case against adding 
TPU to terrestrial aerial lidar
The arguments against adding TPU or 
THU/TVU to the LAS specification include:

1. There is no outcry in the end-user 
community for TPU to be included. 
To the end-user, TPU is still an 
academic/research endeavor that 
brings no real monetary value to 
the data, especially if adding it will 
incur additional cost. The end-user 
is more concerned with absolute 
accuracy and positioning and how 

different materials and/or terrains 
affect that accuracy.

2. As currently proposed, TPU (THU 
and TVU) would be a function of 
testing and reporting by manufactur-
ers, rather than in situ testing. This 
could potentially lead to a manu-
facturer’s “arms race”, for better or 
worse, to report ever more favorable 
TPU measurements. While this may 
improve the overall measurement 
assessment, it will be dependent 
on some independent verification, 
which may, in turn, add costs to the 
instruments.

Parting thoughts and 
recommendations
Even though there is no end-user demand 
to includer propagated uncertainty in the 
LAS specification, the benefits of doing so 
may outweigh the disadvantages. Having 
more information regarding the accuracy 
of the lidar product can only be beneficial 
to the community. However, safeguarding 
the integrity of the information with 
independently verifiable methods ensures 
that the information is truly useful. Doing 
so means there will likely be additional pre-
mission calibration or testing, which could 
result in additional cost to the end-user.

We welcome your comments on 
this topic, and remember, you can also 
participate in and leave comments with 
the ASPRS LAS Working Group. 

Amar Nayegandhi, Senior Vice President, 
Dewberry, leads the firm’s geospatial and 
technology services team and technology 
solutions market segment.

Al Karlin, Senior Geospatial 
Scientist, Dewberry, serves 
as a consultant on 
Florida-related lidar, 
topography, hydrology,  
and imagery projects.

Nayegandhi, continued from page 48

2024 VOL. 14 NO. 2  LIDARLIDAR   47

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf


The case for (and against) propagated 
uncertainty in aerial topographic lidar
There is a strong case for adding Total Propagated 
Uncertainty to the LAS specification, but it would 
almost certainly increase cost.

T he Geo Week 2024 conference 
provided many opportunities 
for lidar professionals to 

gather, exchange ideas, and explore new 
technologies. Since one of the participat-
ing organizations was the American 
Society for Photogrammetry and Remote 
Sensing (ASPRS), the lidar community 
enjoyed additional opportunities to share 
ideas pertaining to the newly released 
Edition 2 of the ASPRS Positional 
Accuracy Standards for Geospatial Data1 
and the soon-to-be-released ASPRS 
LAS 1.5 specification. Those who have 
participated in the ASPRS Lidar Division 
and its LAS Working Group are well 
aware that one of the hottest and more 
contested topics over the past few meet-
ings has been the addition of “propagated 
uncertainty” to the LAS specification2.

One of the most significant new 
features in ASPRS Positional Accuracy 
Standards for Digital Geographic Data, 
Edition 23 is the reference to including 
the uncertainty in Global Positioning 
System (GPS)/Global Navigation 
Satellite System (GNSS) positions when 

1 asprs.org/revisions-to-the-asprs-positional-
accuracy-standards-for-geospatial-data-2023 

2 Readers interested in joining the LAS 
Working Group, which is open to the 
public, can create a free ASPRS account 
at community.asprs.org/home.

3 publicdocuments.asprs.org/
PositionalAccuracyStd-Ed2-V1 

determining the absolute accuracy 
of lidar surveys (i.e. considering the 
accuracy of surveyed checkpoints when 
computing the accuracy of the final 
product). This same philosophy can 
be extended to include the measured 
variability of the lidar positioning 
components, the mechanical/optical 
components producing the lidar pulse, 
the inertial measurement unit (IMU), 
and the on-board and external GPS 
(Figure 1). As these uncertainty values 
would be unique for each pulse, the 
question becomes: should uncertainty 
values be incorporated into the LAS 
(1.6? 2.0?) specification?

While this may seem like a new 
approach to assessing the overall 
positional accuracy of each lidar pulse, it is 
certainly (pun intended) not a new idea. In 
the undersea world of sonar bathymetry, 
especially in water too deep to obtain 
independent survey checkpoints, the Total 
Propagated Uncertainty (TPU) has been 
the standard of the National Oceanic and 
Atmospheric Administration (NOAA) 
and the International Hydrographic 
Organization (IHO) for assessing 
positional accuracy. By convention, TPU 
is expressed as a combination of Total 
Horizontal Uncertainty (THU) and Total 
Vertical Uncertainty (TVU). Moreover, 
TPU has been a research topic in 
topobathymetric lidar for several years with 
several high-profile agencies, including 
NOAA, the U.S. Army Corps of Engineers 
(USACE), the Joint Airborne Lidar 

FULLCOVERAGE
AMAR NAYEGANDHI

FEATURING AL KARLIN

Figure 1: The use of GPS, IMU, and laser ranging measurements to create a directly 
georeferenced point cloud. Lever-arm offsets and boresight measurements also contribute 
to the overall accuracy of the point cloud.
Image credit: DEM Users Manual, 3rd edition  —  Maune, D.F. and A. Nayegandhi (eds.), 2018. Digital Elevation Model Technologies and 
Applications: The DEM Users Manual, 3rd edition, American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland, 652 pp, p228.

continued on page 47
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